Search results for: testing techniques
7416 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 997415 The Operating Results of the English General Music Course on the Education Platform
Authors: Shan-Ken Chine
Abstract:
This research aims to a one-year course run of String Music Appreciation, an international online course launched on the British open education platform. It explains how to present music teaching videos with three main features. They are music lesson explanations, instrumental playing demonstrations, and live music performances. The plan of this course is with four major themes and a total of 97 steps. In addition, the paper also uses the testing data provided by the education platform to analyze the performance of learners and to understand the operation of the course. It contains three test data in the statistics dashboard. They are course-run measures, total statistics, and statistics by week. The paper ends with a review of the course's star rating in this one-year run. The result of this course run will be adjusted when it starts again in the future.Keywords: music online courses, MOOCs, ubiquitous learning, string music, general music education
Procedia PDF Downloads 377414 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 637413 Weed Out the Bad Seeds: The Impact of Strategic Portfolio Management on Patent Quality
Authors: A. Lefebre, M. Willekens, K. Debackere
Abstract:
Since the 1990s, patent applications have been booming, especially in the field of telecommunications. However, this increase in patent filings has been associated with an (alleged) decrease in patent quality. The plethora of low-quality patents devalues the high-quality ones, thus weakening the incentives for inventors to patent inventions. Despite the rich literature on strategic patenting, previous research has neglected to emphasize the importance of patent portfolio management and its impact on patent quality. In this paper, we compare related patent portfolios vs. nonrelated patents and investigate whether the patent quality and innovativeness differ between the two types. In the analyses, patent quality is proxied by five individual proxies (number of inventors, claims, renewal years, designated states, and grant lag), and these proxies are then aggregated into a quality index. Innovativeness is proxied by two measures: the originality and radicalness index. Results suggest that related patent portfolios have, on average, a lower patent quality compared to nonrelated patents, thus suggesting that firms use them for strategic purposes rather than for the extended protection they could offer. Even upon testing the individual proxies as a dependent variable, we find evidence that related patent portfolios are of lower quality compared to nonrelated patents, although not all results show significant coefficients. Furthermore, these proxies provide evidence of the importance of adding fixed effects to the model. Since prior research has found that these proxies are inherently flawed and never fully capture the concept of patent quality, we have chosen to run the analyses with individual proxies as supplementary analyses; however, we stick with the comprehensive index as our main model. This ensures that the results are not dependent upon one certain proxy but allows for multiple views of the concept. The presence of divisional applications might be linked to the level of innovativeness of the underlying invention. It could be the case that the parent application is so important that firms are going through the administrative burden of filing for divisional applications to ensure the protection of the invention and the preemption of competition. However, it could also be the case that the preempting is a result of divisional applications being used strategically as a backup plan and prolonging strategy, thus negatively impacting the innovation in the portfolio. Upon testing the level of novelty and innovation in the related patent portfolios by means of the originality and radicalness index, we find evidence for a significant negative association with related patent portfolios. The minimum innovation that has been brought on by the patents in the related patent portfolio is lower compared to the minimum innovation that can be found in nonrelated portfolios, providing evidence for the second argument.Keywords: patent portfolio management, patent quality, related patent portfolios, strategic patenting
Procedia PDF Downloads 947412 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy
Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny
Abstract:
Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy
Procedia PDF Downloads 877411 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education
Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari
Abstract:
Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.Keywords: deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code
Procedia PDF Downloads 3847410 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1557409 System Identification of Timber Masonry Walls Using Shaking Table Test
Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi
Abstract:
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition
Procedia PDF Downloads 2647408 Developing Oral Communication Competence in a Second Language: The Communicative Approach
Authors: Ikechi Gilbert
Abstract:
Oral communication is the transmission of ideas or messages through the speech process. Acquiring competence in this area which, by its volatile nature, is prone to errors and inaccuracies would require the adoption of a well-suited teaching methodology. Efficient oral communication facilitates exchange of ideas and easy accomplishment of day-to-day tasks, by means of a demonstrated mastery of oral expression and the making of fine presentations to audiences or individuals while recognizing verbal signals and body language of others and interpreting them correctly. In Anglophone states such as Nigeria, Ghana, etc., the French language, for instance, is studied as a foreign language, being used majorly in teaching learners who have their own mother tongue different from French. The same applies to Francophone states where English is studied as a foreign language by people whose official language or mother tongue is different from English. The ideal approach would be to teach these languages in these environments through a pedagogical approach that properly takes care of the oral perspective for effective understanding and application by the learners. In this article, we are examining the communicative approach as a methodology for teaching oral communication in a foreign language. This method is a direct response to the communicative needs of the learner involving the use of appropriate materials and teaching techniques that meet those needs. It is also a vivid improvement to the traditional grammatical and audio-visual adaptations. Our contribution will focus on the pedagogical component of oral communication improvement, highlighting its merits and also proposing diverse techniques including aspects of information and communication technology that would assist the second language learner communicate better orally.Keywords: communication, competence, methodology, pedagogical component
Procedia PDF Downloads 2667407 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 1467406 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 227405 Optimal Resource Configuration and Allocation Planning Problem for Bottleneck Machines and Auxiliary Tools
Authors: Yin-Yann Chen, Tzu-Ling Chen
Abstract:
This study presents the case of an actual Taiwanese semiconductor assembly and testing manufacturer. Three major bottleneck manufacturing processes, namely, die bond, wire bond, and molding, are analyzed to determine how to use finite resources to achieve the optimal capacity allocation. A medium-term capacity allocation planning model is developed by considering the optimal total profit to satisfy the promised volume demanded by customers and to obtain the best migration decision among production lines for machines and tools. Finally, sensitivity analysis based on the actual case is provided to explore the effect of various parameter levels.Keywords: capacity planning, capacity allocation, machine migration, resource configuration
Procedia PDF Downloads 4617404 Topic-Specific Differences and Lexical Variations in the Use of Violence Metaphors: A Cognitive Linguistic Study of YouTube Breast Cancer Discourse in New Zealand and Pakistan
Authors: Sara Malik, Andreea. S. Calude, Joseph Ulatowski
Abstract:
This paper explores how speakers from New Zealand and Pakistan with breast cancer use violence metaphors to communicate the intensity of their experiences during various stages of illness. With the theoretical foundation in Conceptual Metaphor Theory and the use of Metaphor Identification Procedure for metaphor analysis, this study investigates how speakers with breast cancer use violence metaphors in different cultural contexts. it collected a corpus of forty-six personal narratives from New Zealand and thirty-six from Pakistan, posted between 2011 and 2023 on YouTube by breast cancer organisations, such as ‘NZ Breast Cancer Foundation’ and ‘Pink Ribbon Pakistan’. The data was transcribed using the Whisper AI tool and then curated to include only patients’ discourse, further organised into eight narrative topics: testing phase, treatment phase, remission phase, family support, campaigns and awareness efforts, government support and funding, general information and religious discourse. In this talk, it discuss two aspects of the use of violence metaphors, a) differences in the use of violence metaphors across various narrative topics, and b) lexical variations in the choice of such metaphors. The findings suggest that violence metaphors were used differently across various stages of illness experience. For instance, during the ‘testing phase,’ violence metaphors were employed to convey a sense of punishment as reflected in statements like, ‘Feeling like it was a death sentence, an immediate death sentence’ (NZ Example) and ‘Jese hi aap ko na breast cancer ka pata chalta hai logon ko yeh hona shuru ho jata hai ke oh bas ab to moat ka parwana mil gaya hai’ (Because as soon as you find out you have breast cancer people start to feel that you have received a death warrant) (PK Example). On the other hand, violence metaphor during the ‘treatment phase’ highlighted negative experiences related to chemotherapy as seen in statements like ‘The first lot of chemo I had was disastrous’ (NZ Example) and ‘...chemotherapy ke to, it's the worst of all, it's like a healing poison’ (chemotherapy, it's the worst of all, it's like a healing poison) (PK Example). Second, lexical variations revealed how ‘sunburn’ (a common phenomenon in the NZ) was used as a metaphor to describe the effects of radiotherapy, whereas in the discourse from Pakistan, a more general term, 'burn,' was used instead. In this talk, we will explore the possible reasons behind the different word choices made by speakers from both countries to describe the same process. This study contributes to understanding the use of violence metaphors across various narrative topics of the illness experience and explains how and why speakers from two different countries use lexical variations to describe the same process.Keywords: metaphors, breast cancer discourse, cognitive linguistics, lexical variations, New zealand english, pakistani urdu
Procedia PDF Downloads 317403 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations
Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra
Abstract:
The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.Keywords: electromyography, EMG normalization, functional EMG, older adults
Procedia PDF Downloads 917402 Critical Approach to Define the Architectural Structure of a Health Prototype in a Rural Area of Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Luca Preis
Abstract:
A primary healthcare facility in developing countries should be a multifunctional space able to respond to different requirements: Flexibility, modularity, aggregation and reversibility. These basic features could be better satisfied if applied to an architectural artifact that complies with the typological, figurative and constructive aspects of the context in which it is located. Therefore, the purpose of this paper is to identify a procedure that can define the figurative aspects of the architectural structure of the health prototype for the marginal areas of developing countries through a critical approach. The application context is the rural areas of the Northeast of Bahia in Brazil. The prototype should be located in the rural district of Quingoma, in the municipality of Lauro de Freitas, a particular place where there is still a cultural fusion of black and indigenous populations. Based on the historical analysis of settlement strategies and architectural structures in spaces of public interest or collective use, this paper aims to provide a procedure able to identify the categories and rules underlying typological and figurative aspects, in order to detect significant and generalizable elements, as well as materials and constructive techniques typically adopted in the rural areas of Brazil. The object of this work is therefore not only the recovery of certain constructive approaches but also the development of a procedure that integrates the requirements of the primary healthcare prototype with its surrounding economic, social, cultural, settlement and figurative conditions.Keywords: architectural typology, developing countries, local construction techniques, primary health care.
Procedia PDF Downloads 3237401 Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM
Authors: Azher Jameel, Ghulam Ashraf Harmain
Abstract:
In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques.Keywords: XFEM, EFGM, coupled FE-EFGM, level sets, large deformation
Procedia PDF Downloads 4477400 Relationship between Financial Reporting Transparency and Investment Efficiency: Evidence from Iran
Authors: Bita Mashayekhi, Hamid Kalhornia
Abstract:
One of the most important roles of financial reporting is improving the firms’ investment decisions; however, there is not much supporting evidence for this claim in emerging markets like Iran. In this study, the effect of financial reporting transparency in investment efficiency of Iranian firms has been investigated. In order to do this, 336 listed companies on Tehran Stock Exchange (TSE) has been selected for time period 2012 to 2015 as research sample. For testing our main hypothesis, we classified sample firms into two groups based on their deviation from expected investment: under-investment and over-investment cases. The results indicate that there is positive significant relationship between financial transparency and investment efficiency. In the other words, transparency can mitigate both underinvestment and overinvestment situations.Keywords: corporate governance, disclosure, investment decisions, investment efficiency, transparency
Procedia PDF Downloads 3787399 Biomass Energy: "The Boon for the Would"
Authors: Shubham Giri Goswami, Yogesh Tiwari
Abstract:
In today’s developing world, India and other countries are developing different instruments and accessories for the better standard and life to be happy and prosper. But rather than this we human-beings have been using different energy sources accordingly, many persons such as scientist, researchers etc have developed many Energy sources like renewable and non-renewable energy sources. Like fossil fuel, coal, gas, petroleum products as non-renewable sources, and solar, wind energy as renewable energy source. Thus all non-renewable energy sources, these all Created pollution as in form of air, water etc. due to ultimate use of these sources by human the future became uncertain. Thus to minimize all this environmental affects and destroy the healthy environment we discovered a solution as renewable energy source. Renewable energy source in form of biomass energy, solar, wind etc. We found different techniques in biomass energy, that good energy source for people. The domestic waste, and is a good source of energy as daily extract from cow in form of dung and many other domestic products naturally can be used eco-friendly fertilizers. Moreover, as from my point of view the cow is able to extract 08-12 kg of dung which can be used to make wormy compost fertilizers. Furthermore, the calf urine as insecticides and use of such a compounds will lead to destroy insects and thus decrease communicable diseases. Therefore, can be used by every person and biomass energy can be in those areas such as rural areas where non-renewable energy sources cannot reach easily. Biomass can be used to develop fertilizers, cow-dung plants and other power generation techniques, and this energy is clean and pollution free and is available everywhere thus saves our beautiful planet or blue or life giving planet called as “EARTH”. We can use the biomass energy, which may be boon for the world in future.Keywords: biomass, energy, environment, human, pollution, renewable, solar energy, sources, wind
Procedia PDF Downloads 5267398 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 1797397 Rethinking the Constitutionality of Statutes: Rights-Compliant Interpretation in India and the UK
Authors: Chintan Chandrachud
Abstract:
When primary legislation is challenged for breaching fundamental rights, many courts around the world adopt interpretive techniques to avoid finding such legislation incompatible or invalid. In the UK, these techniques find sanction in section 3 of the Human Rights Act 1998, which directs courts to interpret legislation in a manner which is compatible with European Convention rights, ‘so far as it is possible to do so’. In India, courts begin with the interpretive presumption that Parliament intended to comply with fundamental rights under the Constitution of 1949. In comparing rights-compliant interpretation of primary legislation under the Human Rights Act and the Indian Constitution, this paper makes two arguments. First, that in the absence of a section 3-type mandate, Indian courts have a smaller range of interpretive tools at their disposal in interpreting primary legislation in a way which complies with fundamental rights. For example, whereas British courts frequently read words into statutes, Indian courts consider this an inapposite interpretive technique. The second argument flows naturally from the first. Given that Indian courts have a smaller interpretive toolbox, one would imagine that ceteris paribus, Indian courts’ power to strike down legislation would be triggered earlier than the declaration of incompatibility is in the UK. However, this is not borne out in practice. Faced with primary legislation which appears to violate fundamental rights, Indian courts often reluctantly uphold the constitutionality of statutes (rather than striking them down), as opposed to British courts, which make declarations of incompatibility. The explanation for this seeming asymmetry hinges on the difference between the ‘strike down’ power and the declaration of incompatibility. Whereas the former results in the disapplication of a statute, the latter throws the ball back into Parliament’s court, if only formally.Keywords: constitutional law, judicial review, constitution of India, UK Human Rights Act
Procedia PDF Downloads 2887396 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 1007395 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4807394 Exploring Peculiarities of a Leadership Style of Non-governmental Organization (NGO): Case of Six Non-governmental Organizations Based in Lebanon
Authors: Nour Mohamad Fayad
Abstract:
This study aims to investigate and explore the peculiarities of the leadership style of NGOs based in Lebanon. This study is supported by empirical testing that considers the case of Embrace and other NGOs performing in Lebanese society. Throughout this study researcher demonstrated leadership characteristics, styles, and competencies and demonstrated the evolvement of leadership in recent years. Moreover, this study sheds light on the different NGO leaders and exhibits the exceptional obstacles, on both personal and professional aspects and applies it to the Lebanese society by collecting primary data from 6 NGOs. The findings indicate that there is a positive correlation between peculiarities of leadership style and the performance of NGOs, but this is not consistent across all NGOs in Lebanese societies.Keywords: leadership, peculiarities, NGOs, embrace, Lebanon
Procedia PDF Downloads 877393 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 1687392 The Advancement of Smart Cushion Product and System Design Enhancing Public Health and Well-Being at Workplace
Authors: Dosun Shin, Assegid Kidane, Pavan Turaga
Abstract:
According to the National Institute of Health, living a sedentary lifestyle leads to a number of health issues, including increased risk of cardiovascular dis-ease, type 2 diabetes, obesity, and certain types of cancers. This project brings together experts in multiple disciplines to bring product design, sensor design, algorithms, and health intervention studies to develop a product and system that helps reduce the amount of time sitting at the workplace. This paper illustrates ongoing improvements to prototypes the research team developed in initial research; including working prototypes with a software application, which were developed and demonstrated for users. Additional modifications were made to improve functionality, aesthetics, and ease of use, which will be discussed in this paper. Extending on the foundations created in the initial phase, our approach sought to further improve the product by conducting additional human factor research, studying deficiencies in competitive products, testing various materials/forms, developing working prototypes, and obtaining feedback from additional potential users. The solution consisted of an aesthetically pleasing seat cover cushion that easily attaches to common office chairs found in most workplaces, ensuring a wide variety of people can use the product. The product discreetly contains sensors that track when the user sits on their chair, sending information to a phone app that triggers reminders for users to stand up and move around after sitting for a set amount of time. This paper also presents the analyzed typical office aesthetics and selected materials, colors, and forms that complimented the working environment. Comfort and ease of use remained a high priority as the design team sought to provide a product and system that integrated into the workplace. As the research team continues to test, improve, and implement this solution for the sedentary workplace, the team seeks to create a viable product that acts as an impetus for a more active workday and lifestyle, further decreasing the proliferation of chronic disease and health issues for sedentary working people. This paper illustrates in detail the processes of engineering, product design, methodology, and testing results.Keywords: anti-sedentary work behavior, new product development, sensor design, health intervention studies
Procedia PDF Downloads 1587391 Application of Neural Petri Net to Electric Control System Fault Diagnosis
Authors: Sadiq J. Abou-Loukh
Abstract:
The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.Keywords: petri net, neural petri net, electric control system, fault diagnosis
Procedia PDF Downloads 4747390 Sentiment Classification Using Enhanced Contextual Valence Shifters
Authors: Vo Ngoc Phu, Phan Thi Tuoi
Abstract:
We have explored different methods of improving the accuracy of sentiment classification. The sentiment orientation of a document can be positive (+), negative (-), or neutral (0). We combine five dictionaries from [2, 3, 4, 5, 6] into the new one with 21137 entries. The new dictionary has many verbs, adverbs, phrases and idioms, that are not in five ones before. The paper shows that our proposed method based on the combination of Term-Counting method and Enhanced Contextual Valence Shifters method has improved the accuracy of sentiment classification. The combined method has accuracy 68.984% on the testing dataset, and 69.224% on the training dataset. All of these methods are implemented to classify the reviews based on our new dictionary and the Internet Movie data set.Keywords: sentiment classification, sentiment orientation, valence shifters, contextual, valence shifters, term counting
Procedia PDF Downloads 5047389 Automated Server Configuration Management using Ansible
Authors: Kartik Mahajan
Abstract:
DevOps methodologies streamline software development and operations, promoting collaboration and automation. Traditional server management often relies on manual, repetitive tasks, leading to inefficiencies, potential errors, and increased operational costs. Ansible, as a configuration management tool, presents a compelling solution for automating infrastructure management processes. This review paper explores the implementation and testing of Ansible for server management, specifically focusing on automated user account configuration. By replacing manual procedures with Ansible playbooks, we aim to optimize server management, reduce human error, and potentially mitigate operational expenses. This study offers insights into Ansible’s efficacy within a DevOps context, highlighting its potential to transform server administration practices.Keywords: cloud, Devops, automation, ansible
Procedia PDF Downloads 447388 Characteristics and Durability Evaluation of Air Spring
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Air spring system is widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristic and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed products are excellent. Moreover, to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line. Air spring developed by this study for railway vehicles can guarantee the reliability of average usage of 1 million times at 90% confidence level.Keywords: air spring, reliability, railway, service lifetime
Procedia PDF Downloads 4767387 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques
Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara
Abstract:
In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN
Procedia PDF Downloads 80