Search results for: research network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28489

Search results for: research network

26479 Seismicity and Source Parameter of Some Events in Abu Dabbab Area, Red Sea Coast

Authors: Hamed Mohamed Haggag

Abstract:

Prior to 12 November 1955, no earthquakes have been reported from the Abu Dabbab area in the International Seismological Center catalogue (ISC). The largest earthquake in Abu Dabbab area occurred on November 12, 1955 with magnitude Mb 6.0. The closest station from the epicenter was at Helwan (about 700 km to the north), so the depth of this event is not constrained and no foreshocks or aftershocks were recorded. Two other earthquakes of magnitude Mb 4.5 and 5.2 took place in the same area on March 02, 1982 and July 02, 1984, respectively. Since the installation of Aswan Seismic Network stations in 1982, (250-300 km to the south-west of Abu Dabbab area) then the Egyptian Natoinal Seismic Network stations, it was possible to record some activity from Abu Dabbab area. The recorded earthquakes at Abu Dabbab area as recorded from 1982 to 2014 shows that the earthquake epicenters are distributed in the same direction of the main trends of the faults in the area, which is parallel to the Red Sea coast. The spectral analysis was made for some earthquakes. The source parameters, seismic moment (Mo), source dimension (r), stress drop (Δδ), and apparent stress (δ) are determined for these events. The spectral analysis technique was completed using MAG software program.

Keywords: Abu Dabbab, seismicity, seismic moment, source parameter

Procedia PDF Downloads 464
26478 Assessing the Implementation of Community Driven Development through Social Capital in Migrant and Indigenous Informal Settlements in Accra, Ghana

Authors: Beatrice Eyram Afi Ziorklui, Norihisa Shima

Abstract:

Community Driven Development (CDD) is now a widely recommended and accepted development strategy for informal communities across the continent. Centered on the utilization of social capital through community structures, different informal settlements have different structures and different levels of social capital, which affect the implementation and ability to overcome CDD challenges. Although known to be very successful, there are few perspectives on the implementation of CDD initiatives in different informal settlements. This study assesses the implementation of CDD initiatives in migrant and indigenous informal settlements and their ability to navigate challenges. The case study research design was adopted in this research, and respondents were chosen through simple random sampling. Using the Statistical Package for social scientists (SPSS) for data analysis, the study found that migrant informal settlements implement CDD projects through the network of hierarchical structures based on government systems, whereas indigenous informal settlements implement through the hierarchical social structure based on traditions and culture. The study also found that, with the exception of the challenge of land accessibility in migrant informal settlements, all other challenges, such as participation, resource mobilization, and maintenance, have a significant relationship with social capital, although indigenous informal settlements have higher levels of social capital than migrant informal settlements. The study recommends a framework that incorporates community characteristics and the underlying social capital to facilitate upgrading strategies in informal in Ghana.

Keywords: community driven development, informal settlements, social capital, upgrading

Procedia PDF Downloads 108
26477 Dynamics of the Coupled Fitzhugh-Rinzel Neurons

Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay

Abstract:

Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.

Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks

Procedia PDF Downloads 132
26476 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 509
26475 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria

Authors: I. Grigoratos, R. Monteiro

Abstract:

Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.

Keywords: conversion equation, magnitude of completeness, seismic events, seismic hazard

Procedia PDF Downloads 169
26474 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification

Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi

Abstract:

Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.

Keywords: chitosan, gelatin, superabsorbent, water absorbency

Procedia PDF Downloads 471
26473 Perspectives on Educational Psychological Support Services in New Zealand and South African Schools

Authors: Johnnie Hay

Abstract:

New Zealand is well known for its natural beauty, diversity of people but also for its strong focus on mental health through the provision of a vast network of psycho-social support services. South African-trained psychologists often make New Zealand their new home when emigrating - as it is relatively simple to slot into the well-established mental health system. South Africa is bigger in size, population, GDP and probably people diversity than New Zealand but struggles to provide adequate educational and psychological support services to schools. This is mainly due to budgetary pressures brought about by the imperative to first ensure that the approximately 13 million learners all have a teacher in front of their classes and at an average ratio of not more than 40 learners per class. In this paper, perspectives on educational and psychological support in New Zealand and South African schools will be shared. Through basic qualitative research encompassing semi-structured interviews with two South African educational psychologists who returned from New Zealand, supplemented by document analysis, the New Zealand situation will be scrutinized. South African perspectives will be obtained through a number of semi-structured interviews and questionnaires administered by education support services specialists working in district-based support teams in three provinces of the country. This research is in process, but preliminary findings indicate large disparities between the two countries' emphasis, funding, post provisioning and structure regarding educational and psychological support services.

Keywords: educational psychological support services, support for learners experiencing special needs, education support services, diverse learner population

Procedia PDF Downloads 78
26472 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 490
26471 The Novelty of Mobile Money Solution to Ghana’S Cashless Future: Opportunities, Challenges and Way Forward

Authors: Julius Y Asamoah

Abstract:

Mobile money has seen faster adoption in the decade. Its emergence serves as an essential driver of financial inclusion and an innovative financial service delivery channel, especially to the unbanked population. The rising importance of mobile money services has caught policymakers and regulators' attention, seeking to understand the many issues emerging from this context. At the same time, it is unlocking the potential of knowledge of this new technology. Regulatory responses and support are essential, requiring significant changes to current regulatory practices in Ghana. The article aims to answer the following research questions: "What risk does an unregulated mobile money service pose to consumers and the financial system? "What factors stimulate and hinder the introduction of mobile payments in developing countries? The sample size used was 250 respondents selected from the study area. The study has adopted an analytical approach comprising a combination of qualitative and quantitative data collection methods. Actor-network theory (ANT) is used as an interpretive lens to analyse this process. ANT helps analyse how actors form alliances and enrol other actors, including non-human actors (i.e. technology), to secure their interests. The study revealed that government regulatory policies impact mobile money as critical to mobile money services in developing countries. Regulatory environment should balance the needs of advancing access to finance with the financial system's stability and draw extensively from Kenya's work as the best strategies for the system's players. Thus, regulators need to address issues related to the enhancement of supportive regulatory frameworks. It recommended that the government involve various stakeholders, such as mobile phone operators. Moreover, the national regulatory authority creates a regulatory environment that promotes fair practices and competition to raise revenues to support a business-enabling environment's key pillars as infrastructure.

Keywords: actor-network theory (ANT), cashless future, Developing countries, Ghana, Mobile Money

Procedia PDF Downloads 141
26470 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 89
26469 Comparative Efficacy of Vasodilators on Internal Mammary Artery Flow in Coronary Artery Bypass Grafting (CABG): A Systematic Review and Network Meta-Analysis

Authors: Umm E. Aimen Minhas, Sameen Tahira, Haneen Kamran, Syed Saad Ul Hassan, Haris Bin Khalid, Hadia Nadeem, Ahmed Sanan

Abstract:

In coronary artery bypass grafting (CABG) patients, vasodilators play a key role in optimizing graft patency by preventing vasospasm and enhancing blood flow. Limited literature is available comparing the effectiveness of various vasodilators on IMA flow in CABG patients. Thus, the rationale for conducting this Network-meta-analysis is to identify the most efficacious vasodilator for increasing IMA flow in CABG patients. A systematic search of 3 databases yielded 357 studies, with 19 meeting inclusion criteria (18 RCTs, 1 observational study). The primary outcome was IMA flow, with secondary outcomes including central venous pressure (CVP) and mean arterial pressure (MAP). Analyses were conducted on an intention-to-treat basis using the net meta package in R. A frequentist random-effects model was employed, with consistency assessed via node-splitting and heterogeneity evaluated. The risk of bias was assessed using RoB 2 and ROBINS-I tools. Out of 92 possible pairwise comparisons, 11 were direct, and 3 included both direct and indirect evidence. Network ranking identified milrinone as the most effective vasodilator for improving IMA flow (SMD: 1.12; 95% CI: 0.36–1.87), followed by nitroglycerin (SMD: 0.51; 95% CI: 0.01–1.00). On the contrary, CO₂ insufflation significantly reduced IMA flow (SMD: -1.17; 95% CI: -2.28 to -0.06). Dobutamine significantly increased CVP, favoring placebo, with no notable differences in MAP across interventions. This analysis positions milrinone as a potentially superior agent for enhancing IMA flow in CABG, warranting its consideration as a first-line therapy. However, moderate to high heterogeneity and limited direct evidence highlight the need for more head-to-head trials.

Keywords: IMA flow, vasodilators, CABG, milrinone, cardiac outcomes

Procedia PDF Downloads 11
26468 Monitoring System for Electronic Procurement Systems

Authors: Abdulah Fajar

Abstract:

Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.

Keywords: procurement system, SNMP, LKPP, LPSE

Procedia PDF Downloads 429
26467 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 251
26466 Social Network Roles in Organizations: Influencers, Bridges, and Soloists

Authors: Sofia Dokuka, Liz Lockhart, Alex Furman

Abstract:

Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.

Keywords: organizational network analysis, social roles, influencer, bridge, soloist

Procedia PDF Downloads 111
26465 Computational Team Dynamics in Student New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire.

Keywords: team dynamics, social network analysis, team interaction patterns, new product development teamwork, NPD teams

Procedia PDF Downloads 119
26464 Bicycle Tourism and Sharing Economy (C2C-Tourism): Analysis of the Reciprocity Behavior in the Case of Warmshowers

Authors: Jana Heimel, Franziska Drescher, Lauren Ugur, Graciela Kuchle

Abstract:

Sharing platforms are a widely investigated field. However, there is a research gap with a lack of focus on ‘real’ (non-profit-orientated) sharing platforms. The research project addresses this gap by conducting an empirical study on a private peer-to-peer (P2P) network to investigate cooperative behavior from a socio-psychological perspective. In recent years the conversion from possession to accessing is increasingly influencing different sectors, particularly the traveling industry. The number of people participating in hospitality exchange platforms like Airbnb, Couchsurfing, and Warmshowers (WS) is rapidly growing. WS is an increasingly popular online community that is linking cycling tourists and locals. It builds on the idea of the “sharing economy” as a not-for-profit hospitality network for bicycle tourists. Hosts not only provide a sleeping berth and warm shower free of charge but also offer additional services to their guests, such as cooking and washing clothes for them. According to previous studies, they are motivated by the idea of promoting cultural experience and forming new friendships. Trust and reciprocity are supposed to play major roles in the success of such platforms. The objective of this research project is to analyze the reciprocity behavior within the WS community. Reciprocity is the act of giving and taking among each other. Individuals feel obligated to return a favor and often expect to increase their own chances of receiving future benefits for themselves. Consequently, the drivers that incite giving and taking, as well as the motivation for hosts and guests, are examined. Thus, the project investigates a particular tourism offer that contributes to sustainable tourism by analyzing P2P resp. cyclist-to-cyclist, C2C) tourism. C2C tourism is characterized by special hospitality and generosity. To find out what motivations drive the hosts and which determinants drive the sharing cycling economy, an empirical study has been conducted globally through an online survey. The data was gathered through the WS community and comprised responses from more than 10,000 cyclists around the globe. Next to general information mostly comprising quantitative data on bicycle tourism (year/tour distance, duration and budget), qualitative information on traveling with WS as well as hosting was collected. The most important motivations for a traveler is to explore the local culture, to save money, and to make friends. The main reasons to host a guest are to promote the use of bicycles and to make friends, but also to give back and pay forward. WS members prefer to stay with/host cyclists. The results indicate that C2C tourists share homogenous characteristics and a similar philosophy, which is crucial for building mutual trust. Members of WS are generally extremely trustful. The study promotes an ecological form of tourism by combining sustainability, regionality, health, experience and the local communities' cultures. The empirical evidence found and analyzed, despite evident limitations, enabled us to shed light, especially on the issue of motivations and social capital, and on the functioning of ‘sharing’ platforms. Final research results are intended to promote C2C tourism around the globe to further replace conventional by sustainable tourism.

Keywords: bicycle tourism, homogeneity, reciprocity, sharing economy, trust

Procedia PDF Downloads 120
26463 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm

Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie

Abstract:

Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.

Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments

Procedia PDF Downloads 163
26462 Simulating Elevated Rapid Transit System for Performance Analysis

Authors: Ran Etgar, Yuval Cohen, Erel Avineri

Abstract:

One of the major challenges of transportation in medium sized inner-cities (such as Tel-Aviv) is the last-mile solution. Personal rapid transit (PRT) seems like an applicable candidate for this, as it combines the benefits of personal (car) travel with the operational benefits of transit. However, the investment required for large area PRT grid is significant and there is a need to economically justify such investment by correctly evaluating the grid capacity. PRT main elements are small automated vehicles (sometimes referred to as podcars) operating on a network of specially built guideways. The research is looking at a specific concept of elevated PRT system. Literature review has revealed the drawbacks PRT modelling and simulation approaches, mainly due to the lack of consideration of technical and operational features of the system (such as headways, acceleration, safety issues); the detailed design of infrastructure (guideways, stations, and docks); the stochastic and sessional characteristics of demand; and safety regulations – all of them have a strong effect on the system performance. A highly detailed model of the system, developed in this research, is applying a discrete event simulation combined with an agent-based approach, to represent the system elements and the podecars movement logic. Applying a case study approach, the simulation model is used to study the capacity of the system, the expected throughput of the system, the utilization, and the level of service (journey time, waiting time, etc.).

Keywords: capacity, productivity measurement, PRT, simulation, transportation

Procedia PDF Downloads 170
26461 Probabilistic Approach to Contrast Theoretical Predictions from a Public Corruption Game Using Bayesian Networks

Authors: Jaime E. Fernandez, Pablo J. Valverde

Abstract:

This paper presents a methodological approach that aims to contrast/validate theoretical results from a corruption network game through probabilistic analysis of simulated microdata using Bayesian Networks (BNs). The research develops a public corruption model in a game theory framework. Theoretical results suggest a series of 'optimal settings' of model's exogenous parameters that boost the emergence of corruption. The paper contrasts these outcomes with probabilistic inference results based on BNs adjusted over simulated microdata. Principal findings indicate that probabilistic reasoning based on BNs significantly improves parameter specification and causal analysis in a public corruption game.

Keywords: Bayesian networks, probabilistic reasoning, public corruption, theoretical games

Procedia PDF Downloads 215
26460 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 63
26459 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 54
26458 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels

Procedia PDF Downloads 153
26457 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs

Authors: Navneet Kaur, Amarpreet Singh

Abstract:

In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.

Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network

Procedia PDF Downloads 354
26456 Reflecting on Deafblindness: Recommendations for Implementing Effective Strategies

Authors: V. Argyropoulos, M. Nikolaraizi, K. Tanou

Abstract:

There is little available information concerning the cognitive and communicative abilities of the people who are deaf-blind. This mainly stems from the general inadequacy of existing assessment instruments employed with deafblind individuals. Although considerable variability exists with regard to cognitive capacities of the deaf-blind, careful examination of the literature reveals that the majority of these persons suffer from significant deficits in cognitive and adaptive functioning. The few reports available primarily are case studies, narrative program descriptions, or position papers by workers in the field. Without the objective verification afforded by controlled research, specialists in psychology, education, and other rehabilitation services must rely on personal speculations or biases to guide their decisions in the planning, implementation, and evaluation of services to deaf-blind children and adults. This paper highlights the framework and discusses the results of an action research network. The aim of this study was twofold: a) to describe and analyse the different ways in which a student with deafblindness approached a number of developmental issues such as novel tasks, exploration and manipulation of objects, reactions to social stimuli, motor coordination, and quality of play and b) to map the appropriate functional approach for the specific student that could be used to develop strategies for classroom participation and socialization. The persons involved in this collaborative action research scheme were general teachers, a school counsellor, academic staff and student teachers. Rating scales and checklists were used to gather information in natural activities and settings, and additional data were also obtained through interviews with the educators of the student. The findings of this case study indicated that there is a great need to focus on the development of effective intervention strategies. The results showed that the identification of positive reinforcers for this population might represent an important and challenging aspect of behaviour programmes. Finally, the findings suggest that additional empirical work is needed to increase attention to methodological and social validity issues.

Keywords: action research, cognitive and communicative abilities, deafblindness, effective strategies

Procedia PDF Downloads 189
26455 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 422
26454 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis

Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger

Abstract:

In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.

Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis

Procedia PDF Downloads 336
26453 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism

Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao

Abstract:

Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.

Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2

Procedia PDF Downloads 109
26452 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 402
26451 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 199
26450 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 245