Search results for: plane strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2297

Search results for: plane strain

287 Mathematical Modeling of Nonlinear Process of Assimilation

Authors: Temur Chilachava

Abstract:

In work the new nonlinear mathematical model describing assimilation of the people (population) with some less widespread language by two states with two various widespread languages, taking into account demographic factor is offered. In model three subjects are considered: the population and government institutions with the widespread first language, influencing by means of state and administrative resources on the third population with some less widespread language for the purpose of their assimilation; the population and government institutions with the widespread second language, influencing by means of state and administrative resources on the third population with some less widespread language for the purpose of their assimilation; the third population (probably small state formation, an autonomy), exposed to bilateral assimilation from two rather powerful states. Earlier by us it was shown that in case of zero demographic factor of all three subjects, the population with less widespread language completely assimilates the states with two various widespread languages, and the result of assimilation (redistribution of the assimilated population) is connected with initial quantities, technological and economic capabilities of the assimilating states. In considered model taking into account demographic factor natural decrease in the population of the assimilating states and a natural increase of the population which has undergone bilateral assimilation is supposed. At some ratios between coefficients of natural change of the population of the assimilating states, and also assimilation coefficients, for nonlinear system of three differential equations are received the two first integral. Cases of two powerful states assimilating the population of small state formation (autonomy), with different number of the population, both with identical and with various economic and technological capabilities are considered. It is shown that in the first case the problem is actually reduced to nonlinear system of two differential equations describing the classical model "predator - the victim", thus, naturally a role of the victim plays the population which has undergone assimilation, and a predator role the population of one of the assimilating states. The population of the second assimilating state in the first case changes in proportion (the coefficient of proportionality is equal to the relation of the population of assimilators in an initial time point) to the population of the first assimilator. In the second case the problem is actually reduced to nonlinear system of two differential equations describing type model "a predator – the victim", with the closed integrated curves on the phase plane. In both cases there is no full assimilation of the population to less widespread language. Intervals of change of number of the population of all three objects of model are found. The considered mathematical models which in some approach can model real situations, with the real assimilating countries and the state formations (an autonomy or formation with the unrecognized status), undergone to bilateral assimilation, show that for them the only possibility to avoid from assimilation is the natural demographic increase in population and hope for natural decrease in the population of the assimilating states.

Keywords: nonlinear mathematical model, bilateral assimilation, demographic factor, first integrals, result of assimilation, intervals of change of number of the population

Procedia PDF Downloads 470
286 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products

Authors: Marina Arino Martin, John McEvoy, Eakalak Khan

Abstract:

Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.

Keywords: biodegradation, bacterial degraders, endoxifen, wastewater

Procedia PDF Downloads 215
285 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 406
284 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 117
283 Comparison of the Isolation Rates and Characteristics of Salmonella Isolated from Antibiotic-Free and Conventional Chicken Meat Samples

Authors: Jin-Hyeong Park, Hong-Seok Kim, Jin-Hyeok Yim, Young-Ji Kim, Dong-Hyeon Kim, Jung-Whan Chon, Kun-Ho Seo

Abstract:

Salmonella contamination in chicken samples can cause major health problems in humans. However, not only the effects of antibiotic treatment during growth but also the impacts of poultry slaughter line on the prevalence of Salmonella in final chicken meat sold to consumers are unknown. In this study, we compared the isolation rates and antimicrobial resistance of Salmonella between antibiotic-free, conventional, conventional Korean native retail chicken meat samples and clonal divergence of Salmonella isolates by multilocus sequence typing. In addition, the distribution of extended-spectrum β-lactamase (ESBL) genes in ESBL-producing Salmonella isolates was analyzed. A total of 72 retail chicken meat samples (n = 24 antibiotic-free broiler [AFB] chickens, n = 24 conventional broiler [CB] chickens, and n = 24 conventional Korean native [CK] chickens) were collected from local retail markets in Seoul, South Korea. The isolation rates of Salmonella were 66.6% in AFB chickens, 45.8% in CB chickens, and 25% in CK chickens. By analyzing the minimum inhibitory concentrations of β -lactam antibiotics with the disc-diffusion test, we found that 81.2% of Salmonella isolates from AFB chickens, 63.6% of isolates from CB chickens, and 50% of isolates from CK chickens were ESBL producers; all ESBL-positive isolates had the CTX-M-15 genotype. Interestingly, all ESBL-producing Salmonella were revealed as ST16 by multilocus sequence typing. In addition, all CTX-M-15-positive isolates had the genetic platform of blaCTX-M gene (IS26-ISEcp1-blaCTX-M-15-IS903), to the best of our knowledge, this is the first report in Salmonella around the world. The Salmonella ST33 strain (S. Hadar) isolated in this study has never been reported in South Korea. In conclusion, our findings showed that antibiotic-free retail chicken meat products were also largely contaminated with ESBL-producing Salmonella and that their ESBL genes and genetic platforms were the same as those isolated from conventional retail chicken meat products.

Keywords: antibiotic-free poultry, conventional poultry, multilocus sequence typing, extended-spectrum β-lactamase, antimicrobial resistance

Procedia PDF Downloads 277
282 Genotyping and Phylogeny of Phaeomoniella Genus Associated with Grapevine Trunk Diseases in Algeria

Authors: A. Berraf-Tebbal, Z. Bouznad, , A.J.L. Phillips

Abstract:

Phaeomoniella is a fungus genus in the mitosporic ascomycota which includes Phaeomoniella chlamydospora specie associated with two declining diseases on grapevine (Vitis vinifera) namely Petri disease and esca. Recent studies have shown that several Phaeomoniella species also cause disease on many other woody crops, such as forest trees and woody ornamentals. Two new species, Phaeomoniella zymoides and Phaeomoniella pinifoliorum H.B. Lee, J.Y. Park, R.C. Summerbell et H.S. Jung, were isolated from the needle surface of Pinus densiflora Sieb. et Zucc. in Korea. The identification of species in Phaeomoniella genus can be a difficult task if based solely on morphological and cultural characters. In this respect, the application of molecular methods, particularly PCR-based techniques, may provide an important contribution. MSP-PCR (microsatellite primed-PCR) fingerprinting has proven useful in the molecular typing of fungal strains. The high discriminatory potential of this method is particularly useful when dealing with closely related or cryptic species. In the present study, the application of PCR fingerprinting was performed using the micro satellite primer M13 for the purpose of species identification and strain typing of 84 Phaeomoniella -like isolates collected from grapevines with typical symptoms of dieback. The bands produced by MSP-PCR profiles divided the strains into 3 clusters and 5 singletons with a reproducibility level of 80%. Representative isolates from each group and, when possible, isolates from Eutypa dieback and esca symptoms were selected for sequencing of the ITS region. The ITS sequences for the 16 isolates selected from the MSP-PCR profiles were combined and aligned with sequences of 18 isolates retrieved from GenBank, representing a selection of all known Phaeomoniella species. DNA sequences were compared with those available in GenBank using Neighbor-joining (NJ) and Maximum-parsimony (MP) analyses. The phylogenetic trees of the ITS region revealed that the Phaeomoniella isolates clustered with Phaeomoniella chlamydospora reference sequences with a bootstrap support of 100 %. The complexity of the pathosystems vine-trunk diseases shows clearly the need to identify unambiguously the fungal component in order to allow a better understanding of the etiology of these diseases and justify the establishment of control strategies against these fungal agents.

Keywords: Genotyping, MSP-PCR, ITS, phylogeny, trunk diseases

Procedia PDF Downloads 480
281 Effect of Synthetic L-Lysine and DL-Methionine Amino Acids on Performance of Broiler Chickens

Authors: S. M. Ali, S. I. Mohamed

Abstract:

Reduction of feed cost for broiler production is at most importance in decreasing the cost of production. The objectives of this study were to evaluate the use of synthetic amino acids (L-lysine – DL-methionine) instead of super concentrate and groundnut cake versus meat powder as protein sources. A total of 180 male broiler chicks (Cobb – strain) at 15 day of age (DOA) were selected according to their average body weight (380 g) from a broiler chicks flock at Elbashair Farm. The chicks were randomly divided into six groups of 30 chicks. Each group was further sub divided into three replicates with 10 birds. Six experimental diets were formulated. The first diet contained groundnut cake and super concentrate as the control (GNC + C); in the second diet, meat powder and super concentrate (MP + C) were used. The third diet contained groundnut cake and amino acids (GNC + AA); the forth diet contained meat powder and amino acids (MP + AA). The fifth diet contained groundnut cake, meat powder and super concentrate (GNC + MP + C) and the sixth diet contained groundnut cake, meat powder and amino acids (GNC + MP + AA). The formulated rations were randomly assigned for the different sub groups in a completely randomized design of six treatments and three replicates. Weekly feed intake, body weight and mortality were recorded and body weight gain and feed conversion ratio were calculated. At the end of the experiment (49 DOA), nine birds from each treatment were slaughtered. Live body weight, carcass weight, head, shank, and some internal organs (gizzard, heart, liver, small intestine, and abdominal fat pad) weights were taken. For the overall experimental period the (GNC + C +MP) consumed significantly (P≤0.01) the highest cumulative feed while the (MP + AA) group consumed the lowest amount of feed. The (GNC + C) and the (GNC + AA) groups had the heaviest live body weight while (MP + AA) had the lowest live body weight. The overall FCR was significantly (P≤0.01) the best for (GNC + AA) group while the (MP + AA) reported the worst FCR. However, the (GNC + AA) had significantly (P≤0.01) the lowest AFP. The (GNC + MP + Con) group had the highest dressing % while the (MP + AA) group had the lowest dressing %. It is concluded that amino acids can be used instead of super concentrate in broiler feeding with perfect performance and less cost and that meat powder is not advisable to be used with amino acids.

Keywords: broiler chickens, DL-lysine, methionine, performance

Procedia PDF Downloads 267
280 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
279 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 132
278 Activation of NLRP3 Inflammasomes by Helicobacter pylori Infection in Innate Cellular Model and Its Correlation to IL-1β Production

Authors: Islam Nowisser, Noha Farag, Mohamed El Azizi

Abstract:

Helicobacter pylori is a highly important human pathogen which inhabits about 50% of the population worldwide. Infection with this bacteria is very hard to treat, with high probability of recurrence. H. pylori causes severe gastric diseases, including peptic ulcer, gastritis, and gastric cancer, which has been linked to chronic inflammation. The infection has been reported to be associated with high levels of pro-inflammatory cytokines, especially IL-1β and TNF-α. The aim of the current study is to investigate the molecular mechanisms by which H. pylori activates NLRP3 inflammasome and its contribution to Il-1 β production in an innate cellular model. H. pylori PMSS1 and G27 standard strains, as well as the PMSS1 isogenic mutant strain PMSS1ΔVacA and G27ΔVacA, G27ΔCagA in addition to clinical isolates obtained from biopsy samples from the antrum and corpus mucosa of chronic gastritis patients, were used to establish infection in RAW-264.7 macrophages. The production levels of TNF-α and IL-1β was assessed using ELISA. Since expression of these cytokines is often regulated by the transcription factor complex, nuclear factor-kB (NF-kB), the activation of NF-κB in H. pylori infected cells was also evaluated by luciferase assay. Genomic DNA was extracted from bacterial cultures of H. pylori clinical isolates as well as the standard strains and their corresponding mutants, where they were evaluated for the cagA pathogenicity island and vacA expression. The correlation between these findings and expression of the cagA Pathogenicity Island and vacA in the bacteria was also investigated. The results showed IL-1β, and TNF-α production significantly increased in raw macrophages following H. pylori infection. The cagA+ and vacA+ H. pylori strains induced significant production of IL-1β compared to cagA- and vacA- strains. The activation pattern of NF-κB was correlated in the isolates to their cagA and vacA expression profiles. A similar finding could not be confirmed for TNF-α production. Our study shows the ability of H. pylori to activate NF-kB and induce significant IL-1β production as a possible mechanism for the augmented inflammatory response seen in subjects infected with cagA+ and vacA+ H. pylori strains that would lead to the progression to more severe form of the disease.

Keywords: Helicobacter pylori, IL-1β, inflammatory cytokines, nuclear factor KB, TNF-α

Procedia PDF Downloads 128
277 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 260
276 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax

Procedia PDF Downloads 173
275 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients

Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu

Abstract:

Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.

Keywords: chest radiography, coronavirus, COVID-19, RALE score

Procedia PDF Downloads 178
274 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes

Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy

Abstract:

The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.

Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides

Procedia PDF Downloads 140
273 White-Rot Hymenomycetes as Oil Palm Log Treatments: Accelerating Biodegradation of Basal Stem Rot-Affected Oil Palm Stumps

Authors: Yuvarani Naidu, Yasmeen Siddiqui, Mohd Yusof Rafii , Abu Seman Idris

Abstract:

Sustainability of oil palm production in Southeast Asia, especially in Indonesia and Malaysia, is jeopardized by Ganoderma boninense, the fungus which causes basal stem rot (BSR) in oil palm. The root contact with unattended infected debris left in the plantations during replanting is known to be the primary source of inoculum. Abiding by the law, potentially effective technique of managing Ganoderma infected oil palm debris is deemed necessary because of the zero-burning policy in Malaysian oil palm plantations. White-rot hymenomycetes antagonistic to Ganoderma sp were selected to test their efficacy as log treatments in degrading Ganoderma infected oil palm logs and to minimize the survival of Ganoderma inoculum. Decay rate in terms of mass loss was significantly higher after the application of solid-state cultivation (SSC) of Trametes lactinea FBW (64% ±1.2), followed by Pycnoporus sanguineus FBR (55% ±1.7) in infected log block tissues, after 10 months of treatments. The degradation pattern was clearly distinguished between the treated and non-treated log blocks with the developed SSC formulations. The control infected log blocks showed the highest, whereas infected log blocks treated with either P. sanguineus FBR or T. lactinea FBW SSC formulations exhibited statistically lowest number of Ganoderma spp. recovery on Ganoderma Selective Medium (GSM), after 8 months of treatment. Out of that, the lowest recovery of Ganoderma spp. was reported in infected log blocks inoculated with the strain T. lactinea FBW (21% ± 0.9) followed by P. sanguineus FBR (33% ± 2.2), after 8 months, Further, no recovery of Ganoderma was noticeable, 10 months after treatment applications in log blocks treated with both of the formulations. This is the first nursery-base study to substantiate the initial colonization of white-rot hymenomycetes on oil palm log blocks previously infected with BSR pathogen, G. boninense. The present study has indicated that log blocks treatment with white-rot hymenomycetes significantly affected the mass loss of diseased and healthy log block tissues. This study provides a basis of biotechnological approaches inefficient degradation of oil palm-generated crop debris, under natural conditions with an ultimate aim of reducing the Ganoderma inoculum under heavy BSR infection pressure in eco-friendly manner.

Keywords: basal stem rot disease, ganoderma boninense, oil palm, white-rot fungi

Procedia PDF Downloads 210
272 Molecular Detection of Leishmania from the Phlebotomus Genus: Tendency towards Leishmaniasis Regression in Constantine, North-East of Algeria

Authors: K. Frahtia, I. Mihoubi, S. Picot

Abstract:

Leishmaniasis is a group of parasitic disease with a varied clinical expression caused by flagellate protozoa of the Leishmania genus. These diseases are transmitted to humans and animals by the sting of a vector insect, the female sandfly. Among the groups of dipteral disease vectors, Phlebotominae occupy a prime position and play a significant role in human pathology, such as leishmaniasis that affects nearly 350 million people worldwide. The vector control operation launched by health services throughout the country proves to be effective since despite the prevalence of the disease remains high especially in rural areas, leishmaniasis appears to be declining in Algeria. In this context, this study mainly concerns molecular detection of Leishmania from the vector. Furthermore, a molecular diagnosis has also been made on skin samples taken from patients in the region of Constantine, located in the North-East of Algeria. Concerning the vector, 5858 sandflies were captured, including 4360 males and 1498 females. Male specimens were identified based on their morphological. The morphological identification highlighted the presence of the Phlebotomus genus with a prevalence of 93% against 7% represented by the Sergentomyia genus. About the identified species, P. perniciosus is the most abundant with 59.4% of the male identified population followed by P. longicuspis with 24.7% of the workforce. P. perfiliewi is poorly represented by 6.7% of specimens followed by P. papatasi with 2.2% and 1.5% S. dreyfussi. Concerning skin samples, 45/79 (56.96%) collected samples were found positive by real-time PCR. This rate appears to be in sharp decline compared to previous years (alert peak of 30,227 cases in 2005). Concerning the detection of Leishmania from sandflies by RT-PCR, the results show that 3/60 PCR performed genus are positive with melting temperatures corresponding to that of the reference strain (84.1 +/- 0.4 ° C for L. infantum). This proves that the vectors were parasitized. On the other side, identification by RT-PCR species did not give any results. This could be explained by the presence of an insufficient amount of leishmanian DNA in the vector, and therefore support the hypothesis of the regression of leishmaniasis in Constantine.

Keywords: Algeria, molecular diagnostic, phlebotomus, real time PCR

Procedia PDF Downloads 272
271 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 295
270 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 139
269 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography

Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld

Abstract:

With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.

Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry

Procedia PDF Downloads 311
268 Potency of Strophanthus hispidus Stem Bark in the Management of Streptozotocin-Induced Diabetic Rats

Authors: M. Osibemhe, I. O. Onoagbe

Abstract:

Diabetes mellitus is a common disease that has no known cure. The available orthodox drugs used for its management have one or more disadvantages. This study investigated the potency of aqueous and ethanol extracts of Strophanthus hispidus (SH) stem bark in the management of diabetes mellitus. Glucose concentration and lipid profile parameters of normal and streptozotocin-induced diabetic rats were monitored for 12weeks. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin (55 mg/kg). Male rats (wistar strain) numbering 30 were randomly selected into six groups of five rats each. Groups 1 and 6 served as normal and diabetic control respectively and received distilled water for 12weeks. Groups 2 and 3 were normal rats treated orally with the aid of a gavage, 250 mg/kg of aqueous and ethanol extracts respectively for 12weeks. Groups 4 and 5 were diabetic rats and were treated with the respective dose of aqueous and ethanol extracts for the same period. A significant (P˂0.05) progressive decrease in blood glucose concentrations of both normal and diabetic rats treated with the extracts were observed from the 2nd to 12th weeks when compared with the respective controls. No significant (P˃0.05) effects were observed in the basal values of both normal and diabetic rats. Administration of both extracts of SH to diabetic rats significantly (P˂0.05) lowered the concentrations of Total cholesterol, TG, and LDL, whereas it increases the concentration of HDL when compared with diabetic control. The concentrations of total cholesterol and LDL in normal rats treated with SH were also reduced when compared with normal control whereas SH had no significant (P˃0.05) effect on HDL. However, TG level of normal control was significantly (P˂0.05) lower than normal rats treated with both extracts. A progressive increase in weight of normal and diabetic rats treated with the extracts was observed on the 2nd – 12th weeks of administration, whereas diabetic control showed a progressive decrease in weight. The findings from this study indicated that SH has hypoglycemic and anti-lipidemic properties as well as anti-diabetic potentials. It also showed that ethanol extract had greater glucose lowering effect. Hence, SH may be considered as a potent anti-diabetic plant and could be used as alternative drug for the management of diabetes mellitus.

Keywords: concentration, ethanol extract, hypoglycemic, total cholesterol

Procedia PDF Downloads 216
267 Half Dose Tissue Plasminogen Activator for Intermediate-Risk Pulmonary Embolism

Authors: Macie Matta, Ahmad Jabri, Stephanie Jackson

Abstract:

Introduction: In the absence of hypotension, pulmonary embolism (PE) causing right ventricular dysfunction or strain, whether confirmed by imaging or cardiac biomarkers, is deemed to be an intermediate-risk category. Urgent treatment of intermediate-risk PE can prevent progression to hemodynamic instability and death. Management options include thrombolysis, thrombectomy, or systemic anticoagulation. We aim to evaluate the short-term outcomes of a half-dose tissue plasminogen activator (tPA) for the management of intermediate-risk PE. Methods: We retrospectively identified adult patients diagnosed with intermediate-risk PE between the years 2000 and 2021. Demographic data, lab values, imaging, treatment choice, and outcomes were all obtained through chart review. Primary outcomes measured include major bleeding events and in-hospital mortality. Patients on standard systemic anticoagulation without receiving thrombolysis or thrombectomy served as controls. Patient data were analyzed using SAS®️ Software (version 9.4; Cary, NC) to compare individuals that received half-dose tPA with controls, and statistical significance was set at a p-value of 0.05. Results: We included 57 patients in our final analysis, with 19 receiving tPA. Patient characteristics and comorbidities were comparable between both groups. There was a significant difference between PE location, presence of acute deep vein thrombosis, and peak troponin level between both groups. The thrombolytic cohort was more likely to demonstrate a 60/60 sign and thrombus in transit finding on echocardiography than controls. The thrombolytic group was more likely to have major bleeding (17% vs 7.9%, p= 0.4) and in-hospital mortality (5.3% vs 0%, p=0.3); however, this was not statistically significant. Patients who received half-dose tPA had non-significantly higher rates of major bleeding and in-hospital mortality. Larger scale, randomized control trials are needed to establish the benefit and safety of thrombolytics in patients with intermediate-risk PE.

Keywords: pulmonary embolism, half dose thrombolysis, tissue plasminogen activator, cardiac biomarkers, echocardiographic findings, major bleeding event

Procedia PDF Downloads 75
266 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 180
265 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 87
264 Teachers’ Instructional Decisions When Teaching Geometric Transformations

Authors: Lisa Kasmer

Abstract:

Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well.

Keywords: coordinate plane, geometric transformations, instructional decisions, middle school mathematics

Procedia PDF Downloads 88
263 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 321
262 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention

Procedia PDF Downloads 357
261 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 175
260 Characterization of a Broad Range Antimicrobial Substance from Pseudozyma aphidis

Authors: Raviv Harris, Maggie Levy

Abstract:

Natural product-based pesticides may serve as an alternative to the traditional synthetic pesticides, which have a potentially damaging effect, both to human health and for the environment. Along with plants, microorganisms are a prospective source of such biological pesticides. A unique and active strain of P. aphidis (designated isolate L12, Israel 2004), an epiphytic and non-pathogenic basidiomycete yeast, was isolated in our lab from strawberry leaves. P. aphidis L12 secretions were found to inhibit broad range of plant pathogens. This work demonstrates that metabolites isolated from the biocontrol agent P. aphidis (isolate L12) can inhibit varied fungal and bacterial phytopathogens. Biologically active metabolites were extracted from P. aphidis biomass, using the organic solvent ethyl acetate. The antimicrobial activity of the extract was demonstrated, both in vitro and in planta. Using disk diffusion assays, the following inhibition zones were obtained: 43cm² for Pseudomonas syringae pv. tomato, 28.5cm² for Xanthomonas campestris pv. vesicatoria, 59cm² for Clavibacter michiganensis subsp. michiganensis, 34cm² for Erwinia amylovora and 34cm² for Agrobacterium tumefaciens. Additionally, strong inhibitory activity of the extract against fungi mycelial growth was established, with IC₅₀ values of 606µg ml⁻¹ for Botrytis cinerea, 221µg ml⁻¹ for Pythium spp., 519µg ml⁻¹ for Rhizoctonia solani, 455µg ml⁻¹ for Sclerotinia sclerotiorum, 2270µg ml⁻¹ for Fusarium oxysporum f. sp. lycopersici, and 2038µg ml⁻¹ for Alternaria alternata. The results of the in planta experiments demonstrated a dose-dependent reduction in disease infection. Significant inhibition of B. cinerea lesions on tomato plants was obtained when a spore suspension of this pathogen was treated with extract concentrations higher than 4.2mg ml⁻¹. Concentration of 7mg ml⁻¹ caused a reduction of over 95% in the lesion size of B. cinerea on tomato plants. The strong antimicrobial activity demonstrated both in vitro and in planta against varied phytopathogens, may indicate that the extracted antimicrobial metabolites have potential to serve as natural pesticides in the field.

Keywords: antimicrobial, B. cinerea, metabolites, natural pesticides, P. aphidis

Procedia PDF Downloads 231
259 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 248
258 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 177