Search results for: one side class algorithm
5720 Teacher-Child Interactions within Learning Contexts in Prekindergarten
Authors: Angélique Laurent, Marie-Josée Letarte, Jean-Pascal Lemelin, Marie-France Morin
Abstract:
This study aims at exploring teacher-child interactions within learning contexts in public prekindergartens of the province of Québec (Canada). It is based on previous research showing that teacher-child interactions in preschools have direct and determining effects on the quality of early childhood education and could directly or indirectly influence child development. However, throughout a typical preschool day, children experience different learning contexts to promote their learning opportunities. Depending on these specific contexts, teacher-child interactions could vary, for example, between free play and shared book reading. Indeed, some studies have found that teacher-directed or child-directed contexts might lead to significant variations in teacher-child interactions. This study drew upon both the bioecological and the Teaching Through Interactions frameworks. It was conducted through a descriptive and correlational design. Fifteen teachers were recruited to participate in the study. At Time 1 in October, they completed a diary to report the learning contexts they proposed in their classroom during a typical week. At Time 2, seven months later (May), they were videotaped three times in the morning (two weeks’ time between each recording) during a typical morning class. The quality of teacher-child interactions was then coded with the Classroom Assessment Scoring System (CLASS) through the contexts identified. This tool measures three main domains of interactions: emotional support, classroom organization, and instruction support, and10 dimensions scored on a scale from 1 (low quality) to 7 (high quality). Based on the teachers’ reports, five learning contexts were identified: 1) shared book reading, 2) free play, 3) morning meeting, 4) teacher-directed activity (such as craft), and 5) snack. Based on preliminary statistical analyses, little variation was observed within the learning contexts for each domain of the CLASS. However, the instructional support domain showed lower scores during specific learning contexts, specifically free play and teacher-directed activity. Practical implications for how preschool teachers could foster specific domains of interactions depending on learning contexts to enhance children’s social and academic development will be discussed.Keywords: teacher practices, teacher-child interactions, preschool education, learning contexts, child development
Procedia PDF Downloads 1185719 Literature Review of the Management of Parry Romberg Syndrome with Fillers
Authors: Sana Ilyas
Abstract:
Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetryKeywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers
Procedia PDF Downloads 925718 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 1595717 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 5565716 The Role of Teaching Assistants for Deaf Pupils in an England Mainstream Primary School
Authors: Hatice Yildirim
Abstract:
This study is an investigation into ‘The role of teaching assistants (TAs) for deaf pupils in an English primary school’, in order not only to contribute to the education of deaf pupils but also contribute to the literature, in which there has been a lack of attention paid to the role of TAs for deaf pupils. With this in mind, the research design was planned based on using a case study as a qualitative research approach in order to have a deep and first-hand understanding of the case for ‘the role of TAs for deaf pupils’ in a real-life context. 12 semi-structured classroom observations and six semi-structured interviews were carried out with four TAs and two teachers in one English mainstream primary school. The data analysis followed a thematic analysis framework. The results indicated that TAs are utilised based on a one-on-one support model and are deployed under the class teacher in the classroom. Out of the classroom activities are carried out in small groups with the agreement of the TAs and the class teacher, as per the policy of the school. Due to the one-on-one TA support model, the study pointed out the seven different roles carried out by TAs in the education of deaf pupils in an English mainstream primary school. While supporting deaf pupils academically and socially are the main roles of TAs, they also support deaf pupils by recording their progress, communicating with their parents, taking on a pastoral care role, tutoring them in additional support lessons, and raising awareness of deaf pupils’ issues.Keywords: deaf, mainstream, teaching assistant, teaching assistant's roles
Procedia PDF Downloads 2155715 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation
Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen
Abstract:
Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning
Procedia PDF Downloads 795714 Structural Evidence of the Conversion of Nitric Oxide (NO) to Nitrite Ion (NO2‾) by Lactoperoxidase (LPO): Structure of the Complex of LPO with NO2‾ at 1.89å Resolution
Authors: V. Viswanathan, Md. Irshad Ahmad, Prashant K. Singh, Nayeem Ahmad, Pradeep Sharma, Sujata Sharma, Tej P Singh
Abstract:
Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN‾) and iodide (I‾) ions into oxidized products, hypothiocyanite (OSCN‾) and hypoiodite (IO‾) ions, respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2‾). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2‾ ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group, which is linked to pyrrole ring D of the heme moiety, was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered, allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.Keywords: lactoperoxidase, structure, nitric oxide, nitrite ion, intermediate, complex
Procedia PDF Downloads 1175713 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs
Authors: Taysir Soliman
Abstract:
One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph
Procedia PDF Downloads 1945712 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1005711 A Study of Taiwanese Students' Language Use in the Primary International Education via Video Conferencing Course
Authors: Chialing Chang
Abstract:
Language and culture are critical foundations of international mobility. However, the students who are limited to the local environment may affect their learning outcome and global perspective. Video Conferencing has been proven an economical way for students as a medium to communicate with international students around the world. In Taiwan, the National Development Commission advocated the development of bilingual national policies in 2030 to enhance national competitiveness and foster English proficiency and fully launched bilingual activation of the education system. Globalization is closely related to the development of Taiwan's education. Therefore, the teacher conducted an integrated lesson through interdisciplinary learning. This study aims to investigate how the teacher helps develop students' global and language core competencies in the international education class. The methodology comprises four stages, which are lesson planning, class observation, learning data collection, and speech analysis. The Grice's Conversational Maxims are adopted to analyze the students' conversation in the video conferencing course. It is the action research from the teacher's reflection on approaches to developing students' language learning skills. The study lays the foundation for mastering the teacher's international education professional development and improving teachers' teaching quality and teaching effectiveness as a reference for teachers' future instruction.Keywords: international education, language learning, Grice's conversational maxims, video conferencing course
Procedia PDF Downloads 1255710 Research and Development of Intelligent Cooling Channels Design System
Authors: Q. Niu, X. H. Zhou, W. Liu
Abstract:
The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system.Keywords: injection mould, cooling channel, intelligent design, automatic layout, interference checking
Procedia PDF Downloads 4415709 Rhythm-Reading Success Using Conversational Solfege
Authors: Kelly Jo Hollingsworth
Abstract:
Conversational Solfege, a research-based, 12-step music literacy instructional method using the sound-before-sight approach, was used to teach rhythm-reading to 128-second grade students at a public school in the southeastern United States. For each step, multiple scripted techniques are supplied to teach each skill. Unit one was the focus of this study, which is quarter note and barred eighth note rhythms. During regular weekly music instruction, students completed method steps one through five, which includes aural discrimination, decoding familiar and unfamiliar rhythm patterns, and improvising rhythmic phrases using quarter notes and barred eighth notes. Intact classes were randomly assigned to two treatment groups for teaching steps six through eight, which was the visual presentation and identification of quarter notes and barred eighth notes, visually presenting and decoding familiar patterns, and visually presenting and decoding unfamiliar patterns using said notation. For three weeks, students practiced steps six through eight during regular weekly music class. One group spent five-minutes of class time on steps six through eight technique work, while the other group spends ten-minutes of class time practicing the same techniques. A pretest and posttest were administered, and ANOVA results reveal both the five-minute (p < .001) and ten-minute group (p < .001) reached statistical significance suggesting Conversational Solfege is an efficient, effective approach to teach rhythm-reading to second grade students. After two weeks of no instruction, students were retested to measure retention. Using a repeated-measures ANOVA, both groups reached statistical significance (p < .001) on the second posttest, suggesting both the five-minute and ten-minute group retained rhythm-reading skill after two weeks of no instruction. Statistical significance was not reached between groups (p=.252), suggesting five-minutes is equally as effective as ten-minutes of rhythm-reading practice using Conversational Solfege techniques. Future research includes replicating the study with other grades and units in the text.Keywords: conversational solfege, length of instructional time, rhythm-reading, rhythm instruction
Procedia PDF Downloads 1635708 Investigating the Effect of the Psychoactive Substances Act 2016 on the Incidence of Adverse Medical Events in Her Majesty’s Prison (HMP) Leeds
Authors: Hayley Boal, Chloe Bromley, John Fairfield
Abstract:
Novel Psychoactive Substances (NPS) are synthetic compounds designed to reproduce effects of illicit drugs. Cheap, potent, and readily available on UK highstreets from so-called ‘head shops’, in recent years their use has surged and with it have emerged side effects including seizures, aggression, palpitations, coma, and death. Rapid development of new substances has vastly outpaced pre-existing drug legislation but the Psychoactive Substances Act 2016 rendered all but tobacco, alcohol, and amyl nitrates, illegal. Drug use has long been rife within prisons, but the absence of a reliable screening tool alongside the availability of NPS makes them ideal for prison use. Here we examine the occurrence of NPS-related adverse side effects within HMP Leeds, comparing May-September of 2015 and 2017 using daily reports distributed amongst prison staff summarising medical and behavioural incidents of the previous day. There was a statistically-significant rise of over 200% in the use of NPS between 2015 and 2017: 0.562 and 1.149 incidents per day respectively. In 2017, 38.46% incidents required ambulances, fallen from 51.02% in 2015. Although the most common descriptions in both years were ‘seizure’ and ‘unresponsive’, by 2017 ‘inhalation by staff’ had emerged. Patterns of NPS consumption mirrored the prison regime, peaking when cell doors opened, and prisoners could socialise. Despite limited data, the Psychoactive Substances Act has clearly been an insufficient deterrent to the prison population; more must be done to understand and address substance misuse in prison. NPS remains a significant risk to prisoners’ health and wellbeing.Keywords: legislation, novel psychoactive substances, prison, spice
Procedia PDF Downloads 1935707 Efficacy of Sparganium stoloniferum–Derived Compound in the Treatment of Acne Vulgaris: A Pilot Study
Authors: Wanvipa Thongborisute, Punyaphat Sirithanabadeekul, Pichit Suvanprakorn, Anan Jiraviroon
Abstract:
Background: Acne vulgaris is one of the most common dermatologic problems, and can have a significant psychological and physical effect on patients. Propionibacterium acnes' roles in acne vulgaris involve the activation of toll-like receptor 4 (TLR4), and toll-like receptor 2 (TLR2) pathways. By activating these pathways, inflammatory events of acne lesions, comedogenesis and sebaceous lipogenesis can occur. Currently, there are several topical agents commonly use in treating acne vulgaris that are known to have an effect on TLRs, such as retinoic acid and adapalene, but these drugs still have some irritating effects. At present, there is an alarming increase in rate of bacterial resistance due to irrational used of antibiotics both orally and topically. For this reason, acne treatments should contain bioactive molecules targeting at the site of action for the most effective therapeutic effect with the least side effects. Sparganium stoloniferumis a Chinese aquatic herb containing a compound called Sparstolonin B (SsnB), which has been reported to selectively blocks Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4)-mediated inflammatory signals. Therefore, this topical TLR2 and TLR4 antagonist, in a form of Sparganium stoloniferum-derived compound containing SsnB, should give a benefit in reducing inflammation of acne vulgaris lesions and providing an alternative treatments for patients with this condition. Materials and Methods: The objectives of this randomized double blinded split faced placebo controlled trial is to study the safety and efficacy of the Sparganium stoloniferum-derived compound. 32 volunteered patients with mild to moderate degree of acne vulgaris according to global acne grading system were included in the study. After being informed and consented the subjects were given 2 topical treatments for acne vulgaris, one being topical 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) and the other, placebo. The subjects were asked to apply each treatment to either half of the face daily morning and night by randomization for 8 weeks, and come in for a weekly follow up. For each visit, the patients went through a procedure of lesion counting, including comedones, papules, nodules, pustules, and cystic lesions. Results: During 8 weeks of experimentation, the result shows a reduction in total lesions number between the placebo and the treatment side show statistical significance starting at week 4, where the 95% confidence interval begin to no longer overlap, and shows a trend of continuing to be further apart. The decrease in the amount of total lesions between week 0 and week 8 of the placebo side shows no statistical significant at P value >0.05. While the decrease in the amount of total lesions of acne vulgaris of the treatment side comparing between week 0 and week 8 shows statistical significant at P value <0.001. Conclusion: The data demonstrates that 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) is more effective in treating acne vulgaris comparing to topical placebo in treating acne vulgaris, by showing significant reduction in the total numbers of acne lesions. Therefore, this topical Sparganium stoloniferum extraction could become a potential alternative treatment for acne vulgaris.Keywords: acne vulgaris, sparganium stoloniferum, sparstolonin B, toll-like receptor 2, toll-like receptor 4
Procedia PDF Downloads 1905706 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models
Authors: Azadeh Jafari, Robert G. Owens
Abstract:
In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics
Procedia PDF Downloads 3655705 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 355704 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination
Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won
Abstract:
A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination
Procedia PDF Downloads 3815703 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 1415702 A Multilevel Approach of Reproductive Preferences and Subsequent Behavior in India
Authors: Anjali Bansal
Abstract:
Reproductive preferences mainly deal with two questions: when a couple wants children and how many they want. Questions related to these desires are often included in the fertility surveys as they can provide relevant information on the subsequent behavior. The aim of the study is to observe whether respondent’s response to these questions changed over time or not. We also tried to identify socio- economic and demographic factors associated with the stability (or instability) of fertility preferences. For this purpose, we used IHDS1 (2004-05) and follow up survey IHDS2 (2011-12) data and applied bivariate, multivariate and multilevel repeated measure analysis to it to find the consistency between responses. From the analysis, we found that preferences of women changes over the course of time as from the bivariate analysis we have found that 52% of women are not consistent in their desired family size and huge inconsistency are found in desire to continue childbearing. To get a better overlook of these inconsistencies, we have computed Intra Class Correlation (ICC) which tries to explain the consistency between individuals on their fertility responses at two time periods. We also explored that husband’s desire for additional child specifically male offspring contribute to these variations. Our findings lead us to a cessation that in India, individuals fertility preferences changed over a seven-year time period as the Intra Class correlation comes out to be very small which explains the variations among individuals. Concerted efforts should be made, therefore, to educate people, and conduct motivational programs to promote family planning for family welfare.Keywords: change, consistency, preferences, over time
Procedia PDF Downloads 1765701 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy
Procedia PDF Downloads 2295700 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization
Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed
Abstract:
The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.Keywords: MRI, Em algorithm, brain, tumor, Nl-means
Procedia PDF Downloads 3415699 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 995698 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3375697 A Sociolinguistic Investigation of Code-Switching Practices of ESL Students Outside EFL Classrooms
Authors: Shehroz Mukhtar, Maqsood Ahmed, Abdullah Mukhtar, Choudhry Shahid, Waqar Javaid
Abstract:
Code switching is a common phenomenon, generally observed in multilingual communities across the globe. A critical look at code switching literature reveals that mostly code switching has been studied in classroom in learning and teaching context while code switching outside classroom in settings such as café, hostel and so on have been the least explored areas. Current research investigated the reasons for code switching in the interactive practices of students and their perceptions regarding the same outside the classroom settings. This paper is the study of the common practice that prevails in the Universities of Sialkot that bilinguals mix two languages when they speak in different class room situations. In Pakistani classrooms where Multilingual are in abundance i.e. they can speak two or more than two languages at the same time, the code switching or language combination is very common. The teachers of Sialkot switch from one language to another consciously or unconsciously while teaching English in the class rooms. This phenomenon has not been explored in the Sialkot’s teaching context. In Sialkot private educational institutes does not encourage code-switching whereas the public or government institutes use it frequently. The crux of this research is to investigate and identify the importance of code switching by taking its users in consideration. Survey research method and survey questionnaire will be used to get exact data from teachers and students. We will try to highlight the functions and importance of code switching in foreign language classrooms of Sialkot and will explore why this trend is emerging in Sialkot.Keywords: code switching, bilingual context, L1, L2
Procedia PDF Downloads 695696 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2475695 Sentiment Analysis on the East Timor Accession Process to the ASEAN
Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores
Abstract:
One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.Keywords: classification, YouTube, sentiment analysis, support sector machine
Procedia PDF Downloads 1135694 Implementing Effective Mathematical-Discussion Programme for Mathematical Competences in Primary School Classroom in South Korea
Authors: Saeyoung Lee
Abstract:
As the enthusiasm for education in Korea is too much high, it is well known by others that children in Korea get good scores in Mathematics. However, behind of this good reputation, children in Korea are easy to get lose self-confidence, tend to complaint and rarely participate in the class because of too much competition which leads to lack of competences. In this regard, the main goals of this paper are, by applying the programme based on peer-communication on Mathematics education field, it would like to improve self-managemental competence to make children gain self-confidence, communicative competence to make them deal with complaint and communitive competence to make them participated in the class for the age of 10 children to solve this problem. 14 children the age of 10 in one primary school in Gangnam, Seoul, Korea had participated in the research from March 2018 to October 2018. They were under the programme based on peer-communication during the period. Every Mathematics class maintained the same way. Firstly a problem was given to children. Secondly, children were asked to find many ways to solve the problem as much as they could by themselves. Thirdly all ways to solve the problem by children were posted on the board and three of the children made a group to distinguish the ways from valid to invalid. Lastly, all children made a discuss to find one way which is the most efficient among valid ways. Pre-test was carried out by the questionnaire based on Likert scale before applying the programme. The result of the pre-test was 3.89 for self-managemental competence, 3.91 for communicative competence and 4.19 for communitive competence. Post-test was carried out by the same questionnaire after applying the programme. The result of the post-test was 3.93 for self-managemental competence, 4.23 for communicative competence and 4.20 for communitive competence. That means by applying the programme based on peer-communication on Mathematics education field, the age of 10 children in Korea could improve self-managemental, communicative and communitive competence. Especially it works very well on communicative competence by increasing 0.32 points as it marked. Considering this research, Korean Mathematics education based on competition which leads to lack of competences should be changed to cooperative structure to make students more competent rather than just getting good scores. In conclusion, innovative teaching methods which are focused on improving competences such as the programme based on peer-communication which was applied in this research are strongly required to be studied and widely used.Keywords: competences, mathematics education, peer-communication, primary education
Procedia PDF Downloads 1385693 Government Final Consumption Expenditure Financial Deepening and Household Consumption Expenditure NPISHs in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: household, government expenditures, vector error correction model, johansen test
Procedia PDF Downloads 655692 Utilizing Grid Computing to Enhance Power Systems Performance
Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima
Abstract:
Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting
Procedia PDF Downloads 4795691 CFD Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)
Procedia PDF Downloads 151