Search results for: load characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9666

Search results for: load characteristics

7656 Characteristics Features and Action Mechanism of Some Country Made Pistols

Authors: Ajitesh Pal, Arpan Datta Roy, H. K. Pratihari

Abstract:

The different illegal firearms crudely made by skilled gunsmith from scrap materials are popularly known as country made firearms. Such firearms along with improvised ammunition are clandestinely marketed at the cheaper price without any license to the extremist group, criminal, poachers and firearm lovers. As per National Crime Records Bureau (NCRB), MHA, Govt of India about 80% firearm cases are committed by country made/improvised firearms. The ballistic division of the laboratory has examined a good number of cases. The analysis of firearm cases received for forensic examination revealed that 7.65mm calibre pistols mostly improvised firearm are commonly used in firearm related crime cases. In the present communication, physical parameters and other characteristics features of some 7.65mm calibre pistols have been discussed in detail. The detailed study on country made (CM) firearm will help to prepare a database related to type of material used, origin of the raw material and tools used for inscription. The study also includes to establish the chemistry of propellants & head stamp pattern. The database will be helpful to the firearm examiners, researchers, students pursuing study on forensic science as reference material.

Keywords: improvised pistol, stringent gun law, working mechanism, parameters, database

Procedia PDF Downloads 68
7655 Seismic Retrofit of Tall Building Structure with Viscous, Visco-Elastic, Visco-Plastic Damper

Authors: Nicolas Bae, Theodore L. Karavasilis

Abstract:

Increasingly, a large number of new and existing tall buildings are required to improve their resilient performance against strong winds and earthquakes to minimize direct, as well as indirect damages to society. Those advent stationary functions of tall building structures in metropolitan regions can be severely hazardous, in socio-economic terms, which also increase the requirement of advanced seismic performance. To achieve these progressive requirements, the seismic reinforcement for some old, conventional buildings have become enormously costly. The methods of increasing the buildings’ resilience against wind or earthquake loads have also become more advanced. Up to now, vibration control devices, such as the passive damper system, is still regarded as an effective and an easy-to-install option, in improving the seismic resilience of buildings at affordable prices. The main purpose of this paper is to examine 1) the optimization of the shape of visco plastic brace damper (VPBD) system which is one of hybrid damper system so that it can maximize its energy dissipation capacity in tall buildings against wind and earthquake. 2) the verification of the seismic performance of the visco plastic brace damper system in tall buildings; up to forty-storey high steel frame buildings, by comparing the results of Non-Linear Response History Analysis (NLRHA), with and without a damper system. The most significant contribution of this research is to introduce the optimized hybrid damper system that is adequate for high rise buildings. The efficiency of this visco plastic brace damper system and the advantages of its use in tall buildings can be verified since tall buildings tend to be affected by wind load at its normal state and also by earthquake load after yielding of steel plates. The modeling of the prototype tall building will be conducted using the Opensees software. Three types of modeling were used to verify the performance of the damper (MRF, MRF with visco-elastic, MRF with visco-plastic model) 22-set seismic records used and the scaling procedure was followed according to the FEMA code. It is shown that MRF with viscous, visco-elastic damper, it is superior effective to reduce inelastic deformation such as roof displacement, maximum story drift, roof velocity compared to the MRF only.

Keywords: tall steel building, seismic retrofit, viscous, viscoelastic damper, performance based design, resilience based design

Procedia PDF Downloads 187
7654 Predictors of Recent Work-Related Injury in a Rapidly Developing Country: Results from a Worker Survey in Qatar

Authors: Ruben Peralta, Sam Thomas, Nazia Hirani, Ayman El-Menyar, Hassan Al-Thani, Mohammed Al-Thani, Mohammed Al-Hajjaj, Rafael Consunji

Abstract:

Moderate to severe work-related injuries [WRI's] are a leading cause of trauma admission in Qatar but information on risk factors for their incidence are lacking. This study aims to document and analyze the predictive characteristics for WRI to inform the creation of targeted interventions to improve worker safety in Qatar. This study was conducted as part of the NPRP grant # 7 - 1120 - 3 - 288, titled "A Unified Registry for Occupational Injury Prevention in Qatar”. 266 workers were interviewed using a standard questionnaire, during ‘World Day for Safety and Health at Work’, a Ministry of Public Health event, none refused interview. Nurses and doctors from the Hamad Trauma Center conducted the interviews. Questions were translated into the worker’s native language when it was deemed necessary. Standard information on epidemiologic characteristics and incidence of work-related injury were collected and compared between nationalities and those injured versus those not injured. 262 males and 4 females were interviewed. 17 [6.4%] reported a WRI in the last 24 months. More than half of the injured worked in construction [59%] followed by water supply [11.8%]. Factors significantly associated with recent injury were: Working for a company with > 500 employees and speaking Hindi. Protective characteristics included: Being from the Philippines or Sri Lanka, speaking Arabic, working in healthcare, an office or trading and company size between 100-500 employees. Years of schooling and working in Qatar were not predictive factor for WRI. The findings from this survey should guide future research that will better define worker populations at an increased risk for WRI and inform recruiters and sending countries. A focus on worker language skills, interventions in the construction industry and occupational safety in large companies is needed.

Keywords: occupational injury, prevention, safety, trauma, work related injury

Procedia PDF Downloads 321
7653 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution

Procedia PDF Downloads 229
7652 Change of Flavor Characteristics of Flavor Oil Made Using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito) According to Extraction Temperature and Extraction Time

Authors: Gyeong-Suk Jo, Soo-Hyun Ji, You-Seok Lee, Jeong-Hwa Kang

Abstract:

To develop an flavor oil using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito), infiltration extraction method was used to add dried mushroom flavor of Sarcodon aspratus to base olive oil. Edible base oil used during infiltration extraction was pressed olive oil, and infiltration extraction was done while varying extraction temperature to 20, 30, 40 and 50(℃) extraction time to 24 hours, 48 hours and 72 hours. Amount of Sarcodon aspratus added to base oil was 20% compared to 100% of base oil. Production yield of Sarcodon aspratus flavor oil decreased with increasing extraction frequency. Aroma intensity was 2195~2447 (A.U./1㎖), and it increased with increasing extraction temperature and extraction time. Chromaticity of Sarcodon aspratus flavor oil was bright pale yellow with pH of 4.5, sugar content of 71~72 (°Brix), and highest average turbidity of 16.74 (Haze %) shown by the 40℃ group. In the aromatic evaluation, increasing extraction temperature and extraction time resulted in increase of cheese aroma, savory sweet aroma and beef jerky aroma, as well as spicy taste comprised of slight bitter taste, savory taste and slight acrid taste, to make aromatic oil with unique flavor.

Keywords: Flavor Characteristics, Flavor Oil, Infiltration extraction method, mushroom, Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)

Procedia PDF Downloads 368
7651 Direct Torque Control of Induction Motor Employing Differential Evolution Algorithm

Authors: T. Vamsee Kiran, A. Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this differential evolution (DE) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion.The DE based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: differential evolution, direct torque control, PI controller

Procedia PDF Downloads 424
7650 Analysis of Cultural Influences on Quality Management by Comparison of Japanese and German Enterprises

Authors: Hermann Luecken, Young Won Park, Judith M. Puetter

Abstract:

Quality is known to be the accordance of product characteristics and customer requirements. Both the customer requirements and the assessment of the characteristics of the product with regard to the fulfillment of customer requirements are subject to cultural influences. Of course, the processes itself which lead to product manufacturing is also subject to cultural influences. In the first point, the cultural background of the customer influences the quality, in the second point, it is the cultural background of the employees and the company that influences the process itself. In times of globalization products are manufactured at different locations around the world, but typically the quality management system of the country in which the mother company is based is used. This leads to significantly different results in terms of productivity, product quality and process efficiency at the different locations, although the same quality management system is in use. The aim of an efficient and effective quality management system is therefore not doing the same at all locations, but to have the same result at all locations. In the past, standardization was used to achieve the same results. Recent investigations show that this is not the best way to achieve the same characteristics of product quality and production performance. In the present work, it is shown that the consideration of cultural aspects in the design of processes, production systems, and quality management systems results in a significantly higher efficiency and a quality improvement. Both Japanese and German companies were investigated with comparative interviews. The background of this selection is that in most cases the cultural difference regarding industrial processes between Germany and Japan is high. At the same time, however, the customer expectations regarding the product quality are very similar. Interviews were conducted with experts from German and Japanese companies; in particular, companies were selected that operate production facilities both in Germany and in Japan. The comparison shows that the cultural influence on the respective production performance is significant. Companies that adapt the design of their quality management and production systems to the country where the production site is located have a significantly higher productivity and a significantly higher quality of the product than companies that work with a centralized system.

Keywords: comparison of German and Japanese production systems, cultural influence on quality management, expert interviews, process efficiency

Procedia PDF Downloads 158
7649 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 85
7648 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 215
7647 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 385
7646 Debussy's Piano Music: Style Characteristics in Three Categories

Authors: Rika Uchida

Abstract:

Claude Debussy's piano works can be divided into three categories in terms of style characteristics. The first category includes works which are strongly impressionistic, evoking a mood or an atmosphere, rather than making a direct, clear statement. These works often depict nature, and they are descriptive and sensitive in their character. Harmonic vocabulary is often complex, and the sense of tonality is often ambiguous in those works. Examples which belong to this category are ‘Clair de lune’ from Suite Bergamasque, Deux Arabesques, and ‘Reflets dans l'eau’ from Images Book 2. The second category shows little or no trace of impressionism. Works are not descriptive; rather, they are classical or absolute. Examples which belong to this category are Pour le Piano, ‘Hommage à Rameau’ and ‘Movement’ from Images Book 1 and Etudes. The third category can be called exotic. Debussy had a great interest in foreign lands such as the Far and Near East, and Spain. He employs pentatonic and quartal harmonies to describe the Orient, occasionally using the effect of the Javanese gamelan, which impressed him at the Paris Exhibition. His compositions in the Spanish style evoke the atmosphere of Spain. Though he borrowed some techniques from Spanish composers whom he knew, the tonal experimentation which occurs in these works sets them apart. Examples which belong to this category are ‘Pagodes’ and ‘la Soiree dans Grenade’ from Estampes, ‘la Puerta del Vino’ from Preludes Book 2.

Keywords: music, piano, Debussy, style

Procedia PDF Downloads 153
7645 EFL Teachers’ Metacognitive Awareness as a Predictor of Their Professional Success

Authors: Saeedeh Shafiee Nahrkhalaji

Abstract:

Metacognitive knowledge increases EFL students’ ability to be successful learners. Although this relationship has been investigated by a number of scholars, EFL teachers’ explicit awareness of their cognitive knowledge has not been sufficiently explored. The aim of this study was to examine the role of EFL teachers’ metacognitive knowledge in their pedagogical performance. Furthermore, the role played by years of their academic education and teaching experience was also studied. Fifty female EFL teachers were selected. They completed Metacognitive Awareness Inventory (MAI) that assessed six components of metacognition including procedural knowledge, declarative knowledge, conditional knowledge, planning, evaluating, and management strategies. Near the end of the academic semester, the students of each class filled in ‘the Language Teacher Characteristics Questionnaire’ to evaluate their teachers’ pedagogical performance. Four elements of MAI, declarative knowledge, planning, evaluating, and management strategies were found to be significantly correlated with EFL teachers’ pedagogical success. Significant correlation was also established between metacognitive knowledge and EFL teachers’ years of academic education and teaching experience. The findings obtained from this research have contributing implication for EFL teacher educators. The discussion concludes by setting out directions for future research.

Keywords: metacognotive knowledge, pedagogical performance, language teacher characteristics questionnaire, metacognitive awareness inventory

Procedia PDF Downloads 326
7644 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education

Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer

Abstract:

Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.

Keywords: advancing, entrepreneurial, knowledge, industralization

Procedia PDF Downloads 93
7643 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigated

Keywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc

Procedia PDF Downloads 79
7642 Transport Mode Selection under Lead Time Variability and Emissions Constraint

Authors: Chiranjit Das, Sanjay Jharkharia

Abstract:

This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.

Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection

Procedia PDF Downloads 429
7641 Freezing Characteristics and Texture Variation of Apple Fruits after Dehydrofreezing Assisted by Instant Controlled Pressure Drop Treatment

Authors: Leila Ben Haj Said, Sihem Bellagha, Karim Allaf

Abstract:

The present study deals with the dehydrofreezing assisted by instant controlled pressure drop (DIC) treatment of apple fruits. Samples previously dehydrated until different water contents (200, 100, and 30% dry basis (db)) and DIC treated were frozen at two different freezing velocities (V+ and V-), depending on the thermal resistance established between the freezing airflow and the sample surface. The effects of sample water content (W) and freezing velocity (V) on freezing curves and characteristics, exudate water (EW) and texture variation were examined. Lower sample water content implied higher freezing rates, lower initial freezing points (IFP), lower practical freezing time (PFT), and lower specific freezing time (SFT). EW (expressed in g exudate water/100 g water in the product) of 200% and 100% db apple samples was approximately 3%, at low freezing velocity (V-). Whereas, it was lower than 0.5% for apple samples with 30% db water content. Moreover, the impact of freezing velocity on EW was significant and very important only for high water content samples. For samples whose water content was lower than 100% db, firmness (maximum puncture force) was as higher as the water content was lower, without any insignificant impact of freezing velocity.

Keywords: dehydrofreezing, instant controlled pressure drop DIC, freezing time, texture

Procedia PDF Downloads 379
7640 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 532
7639 Obtaining Nutritive Powder from Peel of Mangifera Indica L. (Mango) as a Food Additive

Authors: Chajira Garrote, Laura Arango, Lourdes Merino

Abstract:

This research explains how to obtain nutritious powder from a variety of ripe mango peels Hilacha (Mangifera indica L.) to use it as a food additive. Also, this study intends to use efficiently the by-products resulting from the operations of mango pulp manufacturing process by processing companies with the aim of giving them an added value. The physical and chemical characteristics of the mango peels and the benefits that may help humans, were studied. Unit operations are explained for the processing of mango peels and the production of nutritive powder as a food additive. Emphasis is placed on the preliminary operations applied to the raw material and on the drying method, which is very important in this project to obtain the suitable characteristics of the nutritive powder. Once the powder was obtained, it was subjected to laboratory tests to determine its functional properties: water retention capacity (WRC) and oil retention capacity (ORC), also a sensory analysis for the powder was performed to determine the product profile. The nutritive powder from the ripe mango peels reported excellent WRC and ORC values: 7.236 g of water / g B.S. and 1.796 g water / g B.S. respectively and the sensory analysis defined a complete profile of color, odor and texture of the nutritive powder, which is suitable to use it in the food industry.

Keywords: mango, peel, powder, nutritive, functional properties, sensory analysis

Procedia PDF Downloads 352
7638 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 388
7637 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac

Abstract:

In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed.

Keywords: Carbon Fiber Reinforced Plastic(CFRP), Glass Fiber Reinforced Plastic(GFRP), stainless wire mesh, electromagnetic shielding

Procedia PDF Downloads 412
7636 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: common rail, hydrogen engine, port injection, wave propagation

Procedia PDF Downloads 421
7635 Finite Element Method Analysis of a Modified Rotor 6/4 Switched Reluctance Motor's and Comparison with Brushless Direct Current Motor in Pan-Tilt Applications

Authors: Umit Candan, Kadir Dogan, Ozkan Akin

Abstract:

In this study, the use of a modified rotor 6/4 Switched Reluctance Motor (SRM) and a Brushless Direct Current Motor (BLDC) in pan-tilt systems is compared. Pan-tilt systems are critical mechanisms that enable the precise orientation of cameras and sensors, and their performance largely depends on the characteristics of the motors used. The aim of the study is to determine how the performance of the SRM can be improved through rotor modifications and how these improvements can compete with BLDC motors. Using Finite Element Method (FEM) analyses, the design characteristics and magnetic performance of the 6/4 Switched Reluctance Motor are examined in detail. The modified SRM is found to offer increased torque capacity and efficiency while standing out with its simple construction and robustness. FEM analysis results of SRM indicate that considering its cost-effectiveness and performance improvements achieved through modifications, the SRM is a strong alternative for certain pan-tilt applications. This study aims to provide engineers and researchers with a performance comparison of the modified rotor 6/4 SRM and BLDC motors in pan-tilt systems, helping them make more informed and effective motor selections.

Keywords: reluctance machines, switched reluctance machines, pan-tilt application, comparison, FEM analysis

Procedia PDF Downloads 53
7634 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 24
7633 Study of Composite Beam under the Effect of Shear Deformation

Authors: Hamid Hamli Benzahar

Abstract:

The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.

Keywords: composite beam, shear deformation, moments, finites elements

Procedia PDF Downloads 72
7632 Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description

Authors: Branimir Jurun, Elza Jurun

Abstract:

The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument ‘Quattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip ‘Arduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m². This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure.

Keywords: instrument, measuring unit, waves pressure metering, wind seed measurement

Procedia PDF Downloads 193
7631 Preparation Control Information and Analyzing of Metering Gas System Based of Orifice Plate

Authors: A. Harrouz, A. Benatiallah, O. Harrouz

Abstract:

This paper presents the search for errors in the measurement instruments in a dynamic system of metering liquid or gas and sees the tolerance defined by the international standards and recommendations. We will implement a program on MATLAB/Simulink which is calculated based on the ISO-5167. This program will take the system parameters on considerations such as: the willingness plates, the size of the orifice, the given design conditions, reference conditions, find pressure drop for a given flow, or flow for a loss of given load. The results are considered very good and satisfactory because the errors identified of measuring instruments system are within the margin of error limit by the regulations.

Keywords: analyzing, control, gas, meters system

Procedia PDF Downloads 395
7630 Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study

Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan

Abstract:

Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently.

Keywords: FLACD 3D software, pile group, settlement, soil

Procedia PDF Downloads 125
7629 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: water hammer, hydraulic transient, pipe systems, characteristics method

Procedia PDF Downloads 132
7628 Cooking Qualities and Sensory Evaluation Analysis of a Collection of Traditional Rice Genotypes of Kerala, India

Authors: Vanaja T., Sravya P. K.

Abstract:

Cooking and eating qualities have major roles in determining the quality characteristics of rice. Traditional rice varieties are highly diversified with each other with respect to unique nutrient, cooking, and eating characteristics, which can be used as parents for the development of high-quality varieties. In order to gather vital information for upcoming rice breeding programs, a study was conducted to assess the diversity of the cooking attributes and sensory evaluation of 28 traditional rice genotypes of Kerala, India, conserved at Regional Agricultural Research Station, Pilicode of Kerala Agricultural University. The cultivars ‘Kochuvithu’, ‘Jeerakachamba’, and ‘Rajameni’ exhibited the highest volume expansion ratio. The highest Kernel elongation ratio was recorded for ‘Gandhakasala’, ‘Rajameni’, and ‘Avadi’. A shorter cooking time based on Alkali spread value was shown by the cultivars ‘Kozhivalan’, ‘Kunhikayama’, ‘Rasagadham’, ‘Jadathi’, ‘Japanviolet’, ‘Nooravella’, ‘Punchavella’, ‘Avadi’, ‘Vadakan vellarikayama’, ‘Punchaparuthi’, ‘Shyamala’, ‘China Silk’, ‘Marathondi’, and ‘Gandhakasala’. Sensory evaluation revealed that the cultivars ‘Japanviolet’, ‘Kunhukunhu’, and ‘Kalladiyaran’ can be categorized under moderate to very much.

Keywords: rice, traditional rice varieties, cooking qualities, sensory evaluation, consumer acceptance

Procedia PDF Downloads 14
7627 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 450