Search results for: dynamic monitoring
4899 Real-Time Course Recommendation System for Online Learning Platforms
Authors: benabbess anja
Abstract:
This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions
Procedia PDF Downloads 104898 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks
Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar
Abstract:
Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization
Procedia PDF Downloads 2604897 High-Efficiency Comparator for Low-Power Application
Authors: M. Yousefi, N. Nasirzadeh
Abstract:
In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.Keywords: efficiency, comparator, power, low
Procedia PDF Downloads 3584896 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator
Procedia PDF Downloads 974895 An Overview of the SIAFIM Connected Resources
Authors: Tiberiu Boros, Angela Ionita, Maria Visan
Abstract:
Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS
Procedia PDF Downloads 5824894 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs
Authors: K. N. Dinesh Babu, P. K. Gargava
Abstract:
Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.Keywords: differential protection, intelligent electronic device (IED), 2nd harmonic inhibit, inrush inhibit
Procedia PDF Downloads 3004893 Thermal Image Segmentation Method for Stratification of Freezing Temperatures
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image
Procedia PDF Downloads 3224892 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure
Procedia PDF Downloads 2274891 Molecular Dynamic Simulation of Cold Spray Process
Authors: Aneesh Joshi, Sagil James
Abstract:
Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact
Procedia PDF Downloads 3694890 Global Culture Museums: Bridging Societies, Fostering Understanding, and Preserving Heritage
Authors: Hossam Hegazi
Abstract:
Global culture museums play a pivotal role in fostering cross-cultural connections, enhancing mutual understanding, and safeguarding the rich tapestry of cultural heritage. These institutions serve as dynamic bridges, facilitating the exchange of ideas and values among diverse societies. One of the primary functions of global culture museums is to connect people from different backgrounds. By showcasing the artistic expressions, traditions, and historical artifacts of various civilizations, these museums create a shared space for dialogue. Visitors are afforded the opportunity to explore and appreciate the nuances of cultures different from their own, promoting a sense of global interconnectedness. Moreover, these museums contribute significantly to mutual understanding. Through interactive exhibits, innovative technologies, and educational programs, they offer immersive experiences that transcend linguistic and geographical barriers. Visitors gain insights into the customs, beliefs, and lifestyles of others, fostering empathy and appreciation for cultural diversity. Preserving cultural heritage stands as another key objective of global culture museums. By housing and curating artifacts, artworks, and historical items, these institutions play a crucial role in safeguarding the collective memory of humanity. This preservation effort ensures that future generations have access to the cultural legacies that have shaped societies across the globe. In conclusion, global culture museums serve as dynamic hubs that bring people together, promote understanding, and safeguard the wealth of human cultural heritage. Their impact extends beyond the walls of exhibition halls, contributing to a more interconnected and culturally enriched world.Keywords: global culture museums, cross-cultural connections, mutual understanding, societal dialogue
Procedia PDF Downloads 314889 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids
Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje
Abstract:
Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise
Procedia PDF Downloads 1284888 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 1274887 Carbon Based Classification of Aquaporin Proteins: A New Proposal
Authors: Parul Johri, Mala Trivedi
Abstract:
Major Intrinsic proteins (MIPs), actively involved in the passive transport of small polar molecules across the membranes of almost all living organisms. MIPs that specifically transport water molecules are named aquaporins (AQPs). The permeability of membranes is actively controlled by the regulation of the amount of different MIPs present but also in some cases by phosphorylation and dephosphorylation of the channel. Based on sequence similarity, MIPs have been classified into many categories. All of the proteins are made up of the 20 amino acids, the only difference is there in their orientations. Again all the 20 amino acids are made up of the basic five elements namely: carbon, hydrogen, oxygen, sulphur and nitrogen. These elements are responsible for giving the amino acids the properties of hydrophilicity/hydrophobicity which play an important role in protein interactions. The hydrophobic amino acids characteristically have greater number of carbon atoms as carbon is the main element which contributes to hydrophobic interactions in proteins. It is observed that the carbon level of proteins in different species is different. In the present work, we have taken a sample set of 150 aquaporins proteins from Uniprot database and a dynamic programming code was written to calculate the carbon percentage for each sequence. This carbon percentage was further used to barcode the aqauporins of animals and plants. The protein taken from Oryza sativa, Zea mays and Arabidopsis thaliana preferred to have carbon percentage of 31.8 to 35, whereas on the other hand sequences taken from Mus musculus, Saccharomyces cerevisiae, Homo sapiens, Bos Taurus, and Rattus norvegicus preferred to have carbon percentage of 31 to 33.7. This clearly demarks the carbon range in the aquaporin proteins from plant and animal origin. Hence the atom level analysis of protein sequences can provide us with better results as compared to the residue level comparison.Keywords: aquaporins, carbon, dynamic prgramming, MIPs
Procedia PDF Downloads 3714886 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 734885 Hypergraph for System of Systems modeling
Authors: Haffaf Hafid
Abstract:
Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork
Procedia PDF Downloads 4894884 Bilingual Siblings and Dynamic Family Language Policies in Italian/English Families
Authors: Daniela Panico
Abstract:
Framed by language socialization and family language policy theories, the present study explores the ways the language choice patterns of bilingual siblings contribute to the shaping of the language environment and the language practices of Italian/English families residing in Sydney. The main source of data is video recordings of naturally occurring parent-children and child-to-child interactions during everyday routines (i.e., family mealtimes and siblings playtime) in the home environment. Recurrent interactional practices are analyzed in detail through a conversational analytical approach. This presentation focuses on the interactional trajectories developing during the negotiation of language choices between all family members and between siblings in face-to-face interactions. Fine-grained analysis is performed on language negotiation sequences of multiparty bilingual conversations in order to uncover the sequential patterns through which a) the children respond to the parental strategies aiming to minority language maintenance, and b) the siblings influence each other’s language use and choice (e.g., older siblings positioning themselves as language teachers and language brokers, younger siblings accepting the role of apprentices). The findings show that, along with the parents, children are active socializing agents in the family and, with their linguistic behavior, they contribute to the establishment of a bilingual or a monolingual context in the home. Moreover, by orienting themselves towards the use of one or the other language in family talk, bilingual siblings are a major internal micro force in the language ecology of a bilingual family and can strongly support language maintenance or language shift processes in such domain. Overall, the study provides insights into the dynamic ways in which family language policy is interactionally negotiated and instantiated in bilingual homes as well as the challenges of intergenerational language transmission.Keywords: bilingual siblings, family interactions, family language policy, language maintenance
Procedia PDF Downloads 1924883 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 2404882 Biodiversity Conservation Practices Among Indigenous Peoples in Caraga Region, Mindanao, Philippines
Authors: Milagros S. Salibad, Levita B. Grana
Abstract:
The presence and role of Indigenous Peoples residing in key biodiversity, protected, and watershed areas within the ancestral domain in the Caraga Region hold immense significance. This study aimed to determine the level of biodiversity conservation practices among the Mamanwas, Manobos, and Higaonons, and identify facilitating or hindering factors. Employing a mixed-method research design, 421 respondents participated through a researcher-made questionnaire. Focus group discussions, key informant interviews, researcher field notes, community immersions, and secondary sources were done. The three groups have demonstrated a high level of biodiversity conservation practices manifesting their commitment to conserving their natural resources and ecosystems. Evidently, selecting and cutting only mature trees for shelter and tribal usage, and preservation of large trees that harbor ancestors’ spirits and worship through rituals (Mambabaja). Each group exhibited unique environmental practices shaped by their distinct cultures, traditions, customary knowledge, and access to information. The Mamanwa practiced traditional hunting and gathering by using traps while Manobo practiced shifting cultivation to maintain soil fertility and biodiversity, and Higaonon managed forest resources through traditional forest management (establishment of sacred forests and conservation areas). Various facilitating and hindering factors influenced their conservation efforts. Their traditional knowledge and practices, partnership and collaboration, legal recognition and support, access to information, and biodiversity monitoring system facilitate practices. Insufficient government assistance, political and social issues, scarce financial support, inadequate policy enforcement, lack of livelihood opportunities, and land use conflicts hinder them. Monitoring the sustainability of IPs' local biodiversity conservation practices is essential as they contribute to conservation endeavors.Keywords: biodiversity, conservation, indigenous peoples, traditional knowledge
Procedia PDF Downloads 784881 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission
Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos
Abstract:
Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method
Procedia PDF Downloads 404880 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy
Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane
Abstract:
Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging
Procedia PDF Downloads 784879 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils
Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein
Abstract:
Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.Keywords: air pollution, schools, pupils, congestion
Procedia PDF Downloads 1194878 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation
Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon
Abstract:
This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence
Procedia PDF Downloads 3324877 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints
Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi
Abstract:
This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy
Procedia PDF Downloads 3294876 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 4054875 Comparative Study of Flood Plain Protection Zone Determination Methodologies in Colombia, Spain and Canada
Authors: P. Chang, C. Lopez, C. Burbano
Abstract:
Flood protection zones are riparian buffers that are formed to manage and mitigate the impact of flooding, and in turn, protect local populations. The purpose of this study was to evaluate the Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas in Colombia against international regulations in Canada and Spain, in order to determine its limitations and contribute to its improvement. The need to establish a specific corridor that allows for the dynamic development of a river is clear; however, limitations present in the Colombian Technical Guide are identified. The study shows that international regulations provide similar concepts as used in Colombia, but additionally integrate aspects such as regionalization that allows for a better characterization of the channel way, and incorporate the frequency of flooding and its probability of occurrence in the concept of risk when determining the protection zone. The case study analyzed in Dosquebradas - Risaralda aimed at comparing the application of the different standards through hydraulic modeling. It highlights that the current Colombian standard does not offer sufficient details in its implementation phase, which leads to a false sense of security related to inaccuracy and lack of data. Furthermore, the study demonstrates how the Colombian norm is ill-adapted to the conditions of Dosquebradas typical of the Andes region, both in the social and hydraulic aspects, and does not reduce the risk, nor does it improve the protection of the population. Our study considers it pertinent to include risk estimation as an integral part of the methodology when establishing protect flood zone, considering the particularity of water systems, as they are characterized by an heterogeneous natural dynamic behavior.Keywords: environmental corridor, flood zone determination, hydraulic domain, legislation flood protection zone
Procedia PDF Downloads 1134874 An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa
Authors: Max Moleke
Abstract:
Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity.Keywords: disruption, scheduling, manufacturing, instability
Procedia PDF Downloads 3304873 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures
Authors: Michał Lidner, Zbigniew SzcześNiak
Abstract:
The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.Keywords: adiabatic process, air shock wave, explosive, finite volume method
Procedia PDF Downloads 1934872 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 4144871 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions
Authors: Aidan Battison, Neliswa Mama
Abstract:
Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole
Procedia PDF Downloads 1644870 Data Management System for Environmental Remediation
Authors: Elizaveta Petelina, Anton Sizo
Abstract:
Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.Keywords: data management, environmental remediation, geographic information system, GIS, decision making
Procedia PDF Downloads 163