Search results for: bubble point pressure
6785 Good Faith and Accession in the New Civil Code
Authors: Adelina Vrancianu
Abstract:
The problem of artificial real accession will be analyzed in this study both in terms of old and current Civil Code provisions and in terms of comparative law, European legal and Canadian systems. The current Civil Code from 2009 has brought new changes about the application and solutions regarding artificial real accession. The hypothesis in which a person is making works with his own materials on the real estate belonging to another person is developed and analyzed in detail from national and international point of view in relation with the good faith. The scope of this analysis is to point out what are the changes issued from case-law and which ones are new, inspired from other law systems in regard to the good/bad faith. The new civil code has promoted a definition for this notion. Is this definition a new one inspired from the comparative law or is it inspired from the case-law? Is it explained for every case scenario of accession or is a general notion? The study tries to respond to these questions and to present the new aspects in the area. has reserved a special place for the situation of execution of works with own materials exceeding the border with violation of another’s right of property, where the variety of solutions brings into discussion the case of expropriation for private interest. The new Civil Code is greatly influenced by the Civil Code from Quebec in comparison with the old code of French influence. The civil reform was needed and has brought into attention new solutions inspired from the Canadian system which has mitigated the permanent conflict between the constructor and the immovable owner.Keywords: accession, good faith, new civil code, comparative law
Procedia PDF Downloads 4626784 Effect of the Vertical Pressure on the Electrical Behaviour of the Micro-Copper Polyurethane Composite Films
Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi
Abstract:
Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element method based on the representative volume element (FE-RVE) was successfully used to predict their electrical behaviour under applied pressures. Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model
Procedia PDF Downloads 1976783 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method
Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati
Abstract:
An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)
Procedia PDF Downloads 2846782 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1426781 Time Pressure and Its Effect at Tactical Level of Disaster Management
Authors: Agoston Restas
Abstract:
Introduction: In case of managing disasters decision makers can face many times such a special situation where any pre-sign of the drastically change is missing therefore the improvised decision making can be required. The complexity, ambiguity, uncertainty or the volatility of the situation can require many times the improvisation as decision making. It can be taken at any level of the management (strategic, operational and tactical) but at tactical level the main reason of the improvisation is surely time pressure. It is certainly the biggest problem during the management. Methods: The author used different tools and methods to achieve his goals; one of them was the study of the relevant literature, the other one was his own experience as a firefighting manager. Other results come from two surveys that are referred to; one of them was an essay analysis, the second one was a word association test, specially created for the research. Results and discussion: This article proves that, in certain situations, the multi-criteria, evaluating decision-making processes simply cannot be used or only in a limited manner. However, it can be seen that managers, directors or commanders are many times in situations that simply cannot be ignored when making decisions which should be made in a short time. The functional background of decisions made in a short time, their mechanism, which is different from the conventional, was studied lately and this special decision procedure was given the name recognition-primed decision. In the article, author illustrates the limits of the possibilities of analytical decision-making, presents the general operating mechanism of recognition-primed decision-making, elaborates on its special model relevant to managers at tactical level, as well as explore and systemize the factors that facilitate (catalyze) the processes with an example with fire managers.Keywords: decision making, disaster managers, recognition primed decision, model for making decisions in emergencies
Procedia PDF Downloads 2596780 The Three-Zone Composite Productivity Model of Multi-Fractured Horizontal Wells under Different Diffusion Coefficients in a Shale Gas Reservoir
Authors: Weiyao Zhu, Qian Qi, Ming Yue, Dongxu Ma
Abstract:
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interference of the fractures. In regard to the fractured horizontal wells, the free gas was found to majorly contribute to the productivity, while the contribution of the desorption increased with the increased pressure differences.Keywords: multi-scale, fracture network, composite model, productivity
Procedia PDF Downloads 2706779 The Innovative Leadership in Air Forces
Authors: Ahmet Emre Yonder
Abstract:
The concept of present time is inevitably and rapidly changing. That provokes unbalanced, uncertain and elusive platform in the world order. Keeping up with this fluctuation requires a willingness to step beyond the comfort zones and to take a step through unknown. That is the perspectives of organizations in which the shareholders persistently create and then they share their creation. Moreover they are adapted to the unpredictable shifts and they establish vision. These are the meaning of innovation which is a process that converts new ideas to invaluable outcomes and that process can be ensured via innovative leaders. Leaders’ creativity is needed when challenging against countless complicated and unsteady situations in the battlefield. However, little attention has been paid to the importance of being innovative leader apart from innovating new technologies so far. Additionally, in most situation militarist organizations are hesitant to welcome different attitudes and that may discourage new ideas. Furthermore military leaders may complain about the lack of sources in today's world where the sources are very rare. In that point military leaders should change the strategies they apply from conventional views to the innovation of different point of views. But the constant occupation in Air Forces can be counted as a huge obstacle for innovative thinking. An organizational structure is needed to be developed for solutions of the problems which the creative leaders will encounter.This article focuses on how to raise innovative military leaders with innovative thinking skills and the need for a change from conventional to the innovative leadership in Air Forces. It also gives important suggestions to encourage raising innovative military leaders.Keywords: air force, creativity, leadership, military, innovation
Procedia PDF Downloads 3136778 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia
Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann
Abstract:
The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn
Procedia PDF Downloads 2526777 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence
Authors: K. N. Kiran, S. Anish
Abstract:
It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow
Procedia PDF Downloads 3496776 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery
Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie
Abstract:
This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method
Procedia PDF Downloads 4686775 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)
Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong
Abstract:
Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts
Procedia PDF Downloads 1466774 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase
Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi
Abstract:
Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability
Procedia PDF Downloads 3906773 Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India
Authors: Dudam Bharath Kumar, Harsh Kumar, Naveed Ahmed
Abstract:
Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments.Keywords: noise pollution, vehicular traffic, urban environment, noise meter
Procedia PDF Downloads 2976772 Experimental and Numerical Performance Analysis for Steam Jet Ejectors
Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed
Abstract:
The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.Keywords: solar energy, jet ejector, vacuum, evaporating effects
Procedia PDF Downloads 6216771 Efficacy of Biofeedback-Assisted Pelvic Floor Muscle Training on Postoperative Stress Urinary Incontinence
Authors: Asmaa M. El-Bandrawy, Afaf M. Botla, Ghada E. El-Refaye, Hassan O. Ghareeb
Abstract:
Background: Urinary incontinence is a common problem among adults. Its incidence increases with age and it is more frequent in women. Pelvic floor muscle training (PFMT) is the first-line therapy in the treatment of pelvic floor dysfunction (PFD) either alone or combined with biofeedback-assisted PFMT. The aim of the work: The purpose of this study is to evaluate the efficacy of biofeedback-assisted PFMT in postoperative stress urinary incontinence. Settings and Design: A single blind controlled trial design was. Methods and Material: This study was carried out in 30 volunteer patients diagnosed as severe degree of stress urinary incontinence and they were admitted to surgical treatment. They were divided randomly into two equal groups: (Group A) consisted of 15 patients who had been treated with post-operative biofeedback-assisted PFMT and home exercise program (Group B) consisted of 15 patients who had been treated with home exercise program only. Assessment of all patients in both groups (A) and (B) was carried out before and after the treatment program by measuring intra-vaginal pressure in addition to the visual analog scale. Results: At the end of the treatment program, there was a highly statistically significant difference between group (A) and group (B) in the intra-vaginal pressure and the visual analog scale favoring the group (A). Conclusion: biofeedback-assisted PFMT is an effective method for the symptomatic relief of post-operative female stress urinary incontinence.Keywords: stress urinary incontinence, pelvic floor muscles, pelvic floor exercises, biofeedback
Procedia PDF Downloads 3086770 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate
Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani
Abstract:
In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.Keywords: wood composite, recycled polycarbonate, silk fibers, polymer
Procedia PDF Downloads 936769 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products
Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh
Abstract:
Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask
Procedia PDF Downloads 4666768 Factors Affecting Special Core Analysis Resistivity Parameters
Authors: Hassan Sbiga
Abstract:
Laboratory measurements methods were undertaken on core samples selected from three different fields (A, B, and C) from the Nubian Sandstone Formation of the central graben reservoirs in Libya. These measurements were conducted in order to determine the factors which affect resistivity parameters, and to investigate the effect of rock heterogeneity and wettability on these parameters. This included determining the saturation exponent (n) in the laboratory at two stages. The first stage was before wettability measurements were conducted on the samples, and the second stage was after the wettability measurements in order to find any effect on the saturation exponent. Another objective of this work was to quantify experimentally pores and porosity types (macro- and micro-porosity), which have an affect on the electrical properties, by integrating capillary pressure curves with other routine and special core analysis. These experiments were made for the first time to obtain a relation between pore size distribution and saturation exponent n. Changes were observed in the formation resistivity factor and cementation exponent due to ambient conditions and changes of overburden pressure. The cementation exponent also decreased from GHE-5 to GHE-8. Changes were also observed in the saturation exponent (n) and water saturation (Sw) before and after wettability measurement. Samples with an oil-wet tendency have higher irreducible brine saturation and higher Archie saturation exponent values than samples with an uniform water-wet surface. The experimental results indicate that there is a good relation between resistivity and pore type depending on the pore size. When oil begins to penetrate micro-pore systems in measurements of resistivity index versus brine saturation (after wettability measurement), a significant change in slope of the resistivity index relationship occurs.Keywords: part of thesis, cementation, wettability, resistivity
Procedia PDF Downloads 2466767 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 1226766 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity
Procedia PDF Downloads 1616765 Biomass and CPUA Estimation and Distribution Pattern of Saurida Tumbil in the Northwest of Persian Gulf
Authors: Negar Ghotbeddin, Izadpanah Zeinab, Tooraj Valinassab, Mohammad Azhir
Abstract:
It is reported on results of a trawls survey in 2011 to assess the amount of biomass and Catch Per Unit of Area (CPUA) and also to determine the distribution pattern of Synodonidae family of demersal fishes (with emphasize on great lizardfish, Saurida tumbil) as one the most important and commercial fish species in the northwest of Persian Gulf. Samples were collected at a total 65 trawl stations selected a stratified random procedure. The study area was stratified to five strata (A to E) covering the depth layers of 10-20, 20-30 and 30-50 m. The catch rates of CPUA and biomass of lizardfishes were estimated to be approximately 316.20 kg/nm2, and 2902.1 tons, respectively. The highest value of biomass of Synodontids was recorded in the east of the study area, Bordkhoon to Dayer (stratum D & E, approximately 1310.6 tonnes) and in depth layer of 30-50 m; and the lowest value was estimated for stratum A (West of Khuzestan Province) and in depth layer of 10-20 m. On the other hand, the highest CPUA was recorded in stratum D and depth layer of 20-30 m; and the lowest value for stratum A and 10-20 m depth. It was concluded that stratum D (namely from Bordkhoon to Dayer) contains the best fishing area from the point of higher density and distribution of Synodontidae in the covering area, and from the point of depth distribution, they are found in depths more than 30 m.Keywords: Saurida tumbil, CPUA, biomass, distribution, fishing area, Persian gulf
Procedia PDF Downloads 4066764 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications
Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski
Abstract:
Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods
Procedia PDF Downloads 4326763 Meta-Magnetic Properties of LaFe₁₂B₆ Type Compounds
Authors: Baptiste Vallet-Simond, Léopold V. B. Diop, Olivier Isnard
Abstract:
The antiferromagnetic itinerant-electron compound LaFe₁₂B₆ occupies a special place among rare-earth iron-rich intermetallic; it presents exotic magnetic and physical properties. The unusual amplitude-modulated spin configuration defined by a propagation vector k = (¼, ¼, ¼), remarkably weak Fe magnetic moment (0.43 μB) in the antiferromagnetic ground state, especially low magnetic ordering temperature TN = 36 K for an Fe-rich phase, a multicritical point in the complex magnetic phase diagram, both normal and inverse magnetocaloric effects, and huge hydrostatic pressure effects can be highlighted as the most relevant. Both antiferromagnetic (AFM) and paramagnetic (PM) states can be transformed into the ferromagnetic (FM) state via a field-induced first-order metamagnetic transition. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of steep magnetization jumps separated by plateaus, giving rise to an unusual avalanche-like behavior. The metamagnetic transition is accompanied by giant magnetoresistance and large magnetostriction. In the present work, we report on the intrinsic magnetic properties of the La₁₋ₓPrₓFe₁₂B₆ series of compounds exhibiting sharp metamagnetic transitions. The study of the structural, magnetic, magneto-transport, and magnetostrictive properties of the La₁₋ₓPrₓFe₁₂B₆ system was performed by combining a wide variety of measurement techniques. Magnetic measurements were performed up to µ0H = 10 T. It was found that the proportion of Pr had a strong influence on the magnetic properties of this series of compounds. At x=0.05, the ground state at 2K is that of an antiferromagnet, but the critical transition field Hc has been lowered from Hc = 6T at x = 0 to Hc = 2.5 Tat x=0.05. And starting from x=0.10, the ground state of this series of compounds is a coexistence of AFM and FM parts. At x=0.30, the AFM order has completely vanished, and only the FM part is left. However, we still observe meta-magnetic transitions at higher temperatures (above 100 K for x=0.30) from the paramagnetic (P) state to a forced FM state. And, of course, such transitions are accompanied by strong magneto-caloric, magnetostrictive, and magnetoresistance effects. The Curie temperatures for the probed compositions going from x=0.05 to x=0.30 were spread over the temperature range of 40 K up to 100 K.Keywords: metamagnetism, RMB intermetallic, magneto-transport effect, metamagnetic transitions
Procedia PDF Downloads 696762 Improvement of Diesel Oil Properties by Batch Adsorption and Simple Distillation Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
In this research, diesel oil properties, such as aniline point, density, diesel index, cetane index and cetane number before and after treatment were studied. The investigation was considered for diesel oil samples after batch adsorption process using powdered activated carbon. Batch distillation process was applied to all treated diesel oil samples for separation of the solid-liquid mixture. The diesel oil properties were studied to observe the impact of adsorptive desulfurization process on fuel quality. Results showed that the best cetane number for desulfurized diesel oil was found at the best-operating conditions 60℃, 10g activated carbon and 180 minute contact time. The best-desulfurized diesel oil cetane number was obtained around 51 while the cetane number of untreated diesel oil was 34. Results also showed that the calculated cetane number increases as the operating temperature and amounts of adsorbent increases. This behavior was same for other diesel oil properties such as aniline point, diesel index, cetane index and density. The best value for all the fuel properties was found at same operating conditions mentioned above. Thus, it can be concluded that adsorptive desulfurization using powdered activated carbon as adsorbent had significantly improved the fuel quality of diesel oil by reducing aromatic contents of diesel oil.Keywords: activated carbon, adsorption, desulfurization, diesel oil, fuel quality
Procedia PDF Downloads 1476761 Process Optimization for Albanian Crude Oil Characterization
Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici
Abstract:
Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.Keywords: TBP distillation curves, crude oil, optimization, simulation
Procedia PDF Downloads 3046760 A Study of Welfare State and Indian Democracy by Exploration of Social Welfare Programmes in India
Authors: Kuldeep Singh
Abstract:
The present paper is an attempt for tracing the changes in the welfare state in Indian democracy from the starting point till now and aims to critical analyse the social-welfare programmes in India with respect to welfare state. After getting independence from Britishers, India became a welfare state and is aiming towards the upliftment of its citizens. Indian democracy is considered to be the largest amongst democratic countries, instead of this after forty-five years of independence, Panchayati Raj Institution became one of the branches of democratic decentralization institutions in India by 73rd and 74th Constitutional Amendment in 1992. Unfortunately, desired purpose of introducing Panchayati Raj Institution is not achieved after all these delayed efforts. The basic problem regarding achievement of welfare state in India in true sense is unawareness and non-implementation of these social-welfare programmes. Presently, Indian government is only focusing on economic growth of the country but lacking from the social point. The doctrinal method of research is used in this research paper. In the concluding remarks, researcher is partly favoring the government in introducing welfare programmes as there are abundant of welfare schemes and programmes, but majority are facing implementation problem. In last, researcher has suggested regarding programmes and schemes that these should be qualitative in nature and power would be given to effective machinery for further check upon their proper implementation and aware the citizens regarding their rights so that welfare state would be achieved.Keywords: democratic decentralization, Indian democracy, Panchayati Raj institution, social-welfare programmes, welfare state
Procedia PDF Downloads 1676759 Experimental Study - Inorganic Membranes for Air Separation
Authors: Adesola O. Orimoloye, Mohammed N. Kajama, Edward Gobina
Abstract:
Gas permeation of Oxygen [O2] and Nitrogen [N2] were investigated at room temperature using 15 and 6000nm pore diameter tubular commercial alumina ceramic membranes with pressure values ranging 1.00 to 2.50 bar. The flow rates of up to 2.59 and 2.77 l/min were achieved for O2 and N2 respectively. The ratio of O2/N2 flow rates were used to compute the O2/N2 selectivity. The experimental O2/N2 selectivity obtained for 15 nm was 1.05 while the 6000 nm indicated 0.95.Keywords: gas separation, nitrogen, oxygen, selectivity
Procedia PDF Downloads 3616758 Time-Evolving Wave Packet in Phase Space
Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto
Abstract:
In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.Keywords: chaotic billiard, Poincaré section, scar, wave packet
Procedia PDF Downloads 4526757 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic
Procedia PDF Downloads 1636756 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal
Authors: Motwkel M. Alhaj, Bashir M. Elhassan
Abstract:
The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.Keywords: water treatment, fluoride, adsorption, charcoal, Sudan
Procedia PDF Downloads 116