Search results for: voltage controlled oscillator
1690 A Novel Way to Create Qudit Quantum Error Correction Codes
Authors: Arun Moorthy
Abstract:
Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.Keywords: qudit, error correction, quantum, qubit
Procedia PDF Downloads 1651689 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system
Procedia PDF Downloads 1631688 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach
Authors: Kumbharkhane Ashok
Abstract:
The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.Keywords: liquid, aqueous solutions, time domain reflectometry
Procedia PDF Downloads 4481687 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems
Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib
Abstract:
We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.Keywords: thin films, photovoltaic, hybrid systems, heterojunction
Procedia PDF Downloads 2761686 Phase Control in Population Inversion Using Chirped Laser
Authors: Avijit Datta
Abstract:
We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction
Procedia PDF Downloads 3651685 The Effect of Online Self-Assessment Diaries on Academic Achievement
Authors: Zi Yan
Abstract:
The pedagogical value of self-assessment is widely recognized. However, identifying effective methods to help students develop productive SA practices poses a significant challenge. Since most students do not acquire self-assessment skills intuitively, they need instruction and guidance. This study is a randomized controlled trial aiming to test the effect of online self-assessment diaries on students’ achievement scores compared to a control group. Two groups of secondary school students (N=59), recruited through convenience sampling, participated in the study. The two groups were randomly designated to one of two conditions: control (n = 31) and online self-assessment diary (n = 28). The participants completed a curriculum-specific pre-test and a baseline survey on the first week of the 10-week study, as well as completed a post-test and survey by the tenth week. The results showed that the SA diary intervention had a significantly positive effect on post-intervention language learning scores after controlling for baseline scores. The findings highlight the potential of self-assessment to enhance educational outcomes, emphasizing its significant implications for educational policies that promote the integration of SA strategies into pedagogical practices.Keywords: self-assessment, online diary, academic achievement, experimenal study
Procedia PDF Downloads 571684 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits
Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam
Abstract:
In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection
Procedia PDF Downloads 4451683 Effects of Turmeric Supplementation on Serum Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease
Authors: Maryam Rafraf, Aida Ghaffari
Abstract:
Objectives: Nonalcoholic fatty liver disease (NAFLD) is considered as an independent risk factor for cardiovascular disease (CVD). Dyslipidemia contributes to the enhanced risk of CVD in persons with NAFLD. This study aimed to investigate the effects of turmeric supplementation on serum lipids levels in patients with NAFLD. Methods: In this double-blind, randomized, controlled clinical trial, 46 NAFLD patients (21 males and 25 females; age range, 20 – 60 years) were randomly assigned in the two groups. The intervention and control groups received 3g of turmeric (n = 23) and placebo (n = 23), daily for 12 weeks. Fasting blood samples were collected at baseline and at the end of the trial. Results: Turmeric supplementation significantly increased serum levels of HDL-C compared with the placebo group at the end of the study (by 12.73%, P < 0.05). Serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced within turmeric group at the end of the study (P < 0.05). Conclusions: Turmeric consumption had beneficial effects on serum lipids levels of subjects and may be useful in controlling of CVD risk factors in NAFLD patients.Keywords: nonalcoholic fatty liver, serum lipids, supplementation, turmeric
Procedia PDF Downloads 1581682 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4701681 Acupuncture for Major Depressive Disorders: A Systematic Review of the Randomized Clinical Trials
Authors: Derick Shi-Chen Ou, Liang-Yu Chen
Abstract:
Background: Acupuncture, a potential alternative, and complementary therapy revealed insufficient evidence in depression treatment. The efficacy of acupuncture treatment was still uncertainty. To evaluate the effect of acupuncture in treating depression, the randomized controlled trials (RCTs) were examined. Methods: RCTs of the acupuncture therapy in treating major depression were searched from MEDLINE from 2007 to 2017. Keywords used for searching strategy included acupuncture, acupoint, and major depressive disorder. Results: Among the nine RCTs, four studies demonstrated great improvement in acupuncture treatment and five studies revealed the effectiveness of acupuncture intervention in medication. General trends suggest that acupuncture treatment is as effective as antidepressants with minimal side effects. Conclusion: Despite the promising results from the RCTs, there are still a variety of limitations, including small sample size, imprecise enrollment criteria, difficulties with blinding, randomization, short duration of study and lack of longitudinal follow-up. Therefore, the evidence that acupuncture as an alternative therapy for depression is inconclusive. More rigorously designed RCTs should be conducted in the future.Keywords: acupuncture, major depressive disorders, randomized clinical trials, antidepressants
Procedia PDF Downloads 2401680 Exploring a Teaching Model in Cultural Education Using Video-Focused Social Networking Apps: An Example of Chinese Language Teaching for African Students
Authors: Zhao Hong
Abstract:
When international students study Chinese as a foreign or second language, it is important for them to form constructive viewpoints and possess an open mindset on Chinese culture. This helps them to make faster progress in their language acquisition. Observations from African students at Liaoning Institute of Science and Technology show that by integrating video-focused social networking apps such as Tiktok (“Douyin”) on a controlled basis, students raise their interest not only in making an effort in learning the Chinese language, but also in the understanding of the Chinese culture. During the last twelve months, our research group explored a teaching model using selected contents in certain classroom settings, including virtual classrooms during lockdown periods due to the COVID-19 pandemic. Using interviews, a survey was conducted on international students from African countries at the Liaoning Institute of Science and Technology in Chinese language courses. Based on the results, a teaching model was built for Chinese language acquisition by entering the "mobile Chinese culture".Keywords: Chinese as a foreign language, cultural education, social networking apps, teaching model
Procedia PDF Downloads 771679 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors
Authors: Mohammad Alenezi
Abstract:
Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.Keywords: metal oxide, nanostructure, hydrothermal, sensor
Procedia PDF Downloads 2741678 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4581677 Economic Benefit of Wild Animals: A Possible Threat to Conservation in Ovia Southwest, Edo State, Nigeria
Authors: B. G. Oguntuase, M. O. Olofinsae
Abstract:
This study was carried out to assess the contribution of bush meat to Edo people’s livelihood and the consequence of utilization on conservation. Five markets were selected in Ovia Southwest local government area of Edo State, twenty bush meat sellers were selected from each market. Direct observations were made to document the composition of wild animals under sale in the study area. A total of one hundred questionnaires were administered to the respondents. The questionnaires were all retrieved and analyzed using descriptive analysis. The results show that thirteen animal species are being traded in the area. The price for the animal species (whole animal) ranged from N200 to N9,520. Respondents reported that there is a decline in the animal population over time. Between 64% and 95% of the respondents acknowledged population decline in seven of the thirteen animal species available for sale compared to what it used to be some ten years ago. Sales of wild animal species could be regarded as a profitable business in the rural community, supporting livelihood of the community, but could have devastating effect on conservation as already observed in this study if harvesting of wild animals is not regulated on controlled or sustainable basis.Keywords: conservation, economic benefits, hunting, population, wild animals
Procedia PDF Downloads 4731676 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules
Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang
Abstract:
Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor
Procedia PDF Downloads 5891675 Polyvinylidene Fluoride-Polyaniline Films for Improved Dielectric Properties
Authors: Anjana Jain, S. Jayanth Kumar
Abstract:
Polyvinylidene fluoride (PVDF) is a well-known material for remarkable mechanical properties, resistance to chemicals and superior ferroelectric performances. This endows PVDF the potential for application in supercapacitor devices. The dielectric properties of PVDF, however, are not very high. To improve the dielectric properties of Polyvinylidene fluoride (PVDF), Piezoelectric polymer nanocomposites are prepared without affecting the other useful properties of PVDF. Polyaniline (PANI) was chosen as a filler material to prepare the nanocomposites. PVDF-PANI nanocomposite films were prepared using solvent cast method with different volume fractions of PANI varying from 0.04% to 0.048% of PANI content. The films are characterized for structural, mechanical, and surface morphological properties using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The X-ray diffraction analysis shows that, prepared films were in β-phase. The DSC scans indicated that the degree of crystallinity in PVDF-PANI is improved. Raman and Infrared spectrum further confirm the presence of β-phase of PVDF-PANI film. Tensile properties of PVDF-PANI films were in good agreement with those reported in literature. The surface feature shows that PANI is uniformly distributed in PVDF and also results in disappearance of spherulites. The influence of volume fraction of PANI in PVDF on dielectric properties was analyzed. The results showed that the dielectric permittivity of PVDF-PANI (120) was much higher than that of PVDF (12). The sensitivity of these films was studied on application of a pressure and a constant output voltage was obtained.Keywords: dielectric Properties, PANI, PVDF, smart materials
Procedia PDF Downloads 4431674 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application
Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam
Abstract:
The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength
Procedia PDF Downloads 4541673 Dental Implants in Breast Cancer Patients Receiving Bisphosphonate Therapy
Authors: Mai Ashraf Talaat
Abstract:
Objectives: The aim of this review article is to assess the success of dental implants in breast cancer patients receiving bisphosphonate therapy and to evaluate the risk of developing bisphosphonate-related osteonecrosis of the jaw following dental implant surgery. Materials and Methods: A thorough search was conducted, with no time or language restriction, using: PubMed, PubMed Central, Web of Science, and ResearchGate electronic databases. Medical Subject Headings (MeSH) terms such as “bisphosphonate”, “dental implant”, “bisphosphonate-related osteonecrosis of the jaw (BRONJ)”, “osteonecrosis”, “breast cancer, MRONJ”, and their related entry terms were used. Eligibility criteria included studies and clinical trials that evaluated the impact of bisphosphonates on dental implants. Conclusion: Breast cancer patients undergoing bisphosphonate therapy may receive dental implants. However, the risk of developing BRONJ and implant failure is high. Risk factors such as the type of BP received, the route of administration, and the length of treatment prior to surgery should be considered. More randomized controlled trials with long-term follow-ups are needed to draw more evidence-based conclusions.Keywords: dental implants, breast cancer, bisphosphonates, osteonecrosis, bisphosphonate-related osteonecrosis of the jaw
Procedia PDF Downloads 1171672 Thermo-Physical and Morphological Properties of Pdlcs Films Doped with Tio2 Nanoparticles.
Authors: Salima Bouadjela, Fatima Zohra Abdoune, Lahcene Mechernene
Abstract:
PDLCs are currently considered as promising materials for specific applications such as creation of window blinds controlled by electric field, fog simulators, UV protective glasses, high data storage device etc. We know that the electrical field inside the liquid crystal is low compare with the external electric field [1,2]. An addition of high magnetic and electrical, properties containing compounds to the polymer dispersed liquid crystal (PDLC) will enhance the electrical, optical, and magnetic properties of the PDLC [3,4]. Low Concentration of inorganic nanoparticles TiO2 added to nematic liquid crystals (E7) and also combined with monomers (TPGDA) and cured monomer/LC mixture to elaborate polymer-LC-NP dispersion. The presence of liquid crystal and nanoparticles in TPGDA matrix were conformed and the modified properties of PDLC due to doped nanoparticle were studied and explained by the results of FTIR, POM, UV. Incorporation of nanoparticles modifies the structure of PDLC and thus it makes increase the amount of droplets and decrease in droplet size. we found that the presence of TiO2 nanoparticles leads to a shift the nematic-isotropic transition temperature TNI.Keywords: nanocomposites, PDLC, phases diagram, TiO2
Procedia PDF Downloads 3771671 Controlled Release of Curcumin from a Thermoresponsive Polypeptide Hydrogel for Anti-Tumor Therapy
Authors: Chieh-Nan Chen, Ji-Yu Lin, I-Ming Chu
Abstract:
Polypeptide thermosensitive hydrogel is an excellent candidate as a smart device to deliver drugs and cells due to its remarkable biocompatibility, low gelation concentration, and respond to temperature stimuli, it can be easily injected as a polymer solution into the patient’s body where it undergoes gelation due to an elevation in temperature. Poly (ethylene glycol) monomethyl ether-poly (ethyl-l-glutamate) (mPEG-PELG) contains a hydrophobic side chain –C2H5 which is useful in encapsulating and stabilizing hydrophobic drugs. In this study, we plan to focus on the hydrophobic anti-carcinogenic and anti-inflammatory drug curcumin, which due its insolubility in water, requires a proper carrier for delivery into the body. Our main concept is to use mPEG-PELG to stabilize curcumin, inject the curcumin-loaded hydrogel into the tumor site, and allow the enzymatically-sensitive hydrogel to be degraded by bodily fluids and release the drug. The polymers of interest have been successfully synthesized and characterized by 1H-NMR, FT-IR, SEM, and CMC. Curcumin loading content and drug release were assayed using HPLC. Preliminary results show that these materials have potential as a delivery vehicle for poorly soluble drugs.Keywords: curcumin, drug release, hydrogel, polypeptide material
Procedia PDF Downloads 2971670 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor
Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin
Abstract:
Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator
Procedia PDF Downloads 1061669 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method
Authors: Marzieh Joda, Narges Fallah, Neda Afsham
Abstract:
Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation
Procedia PDF Downloads 2321668 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications
Authors: Eman A. Alghamdi, A. M. Aldhafiri
Abstract:
It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.Keywords: CdTe, conductivity, photovoltaic, ellipsometry
Procedia PDF Downloads 1351667 Designing and Prototyping Permanent Magnet Generators for Wind Energy
Authors: T. Asefi, J. Faiz, M. A. Khan
Abstract:
This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms
Procedia PDF Downloads 1561666 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives
Authors: Fahim Ullah, Muhammad Usman
Abstract:
Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis
Procedia PDF Downloads 671665 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 2961664 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: carbon nanotubes, static friction, dynamic friction
Procedia PDF Downloads 3171663 Fingers Exergames to Improve Fine Motor Skill in Autistic Children
Authors: Zulhisyam Salleh, Fizatul Aini Patakor, Rosilah Wahab, Awangku Khairul Ridzwan Awangku Jaya
Abstract:
Autism is a lifelong developmental disability that affects how people perceive the world and interact with others. Most of these children have difficulty with fine motor skills which typically struggle with handwriting and fine activities in their routine life such as getting dressed and controlled use of the everyday tool. Because fine motor activities encompass so many routine functions, a fine motor delay can have a measurable negative impact on a person's ability to handle daily practical tasks. This project proposed a simple fine motor exercise aid plus the game (exergame) for autistic children who discover from fine motor difficulties. The proposed exergame will be blinking randomly and user needs to bend their finger accordingly. It will notify the user, whether they bend the right finger or not. The system is realized using Arduino, which is programmed to control all the operated circuit. The feasibility studies with six autistic children were conducted and found the child interested in using exergame and could quickly get used to it. This study provides important guidance for future investigations of the exergame potential for accessing and improving fine motor skill among autistic children.Keywords: autism children, Arduino project, fine motor skill, finger exergame
Procedia PDF Downloads 1551662 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process
Authors: Anis A. Ansari, M. Kamil
Abstract:
The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property
Procedia PDF Downloads 1011661 Developing Fault Tolerance Metrics of Web and Mobile Applications
Authors: Ahmad Mohsin, Irfan Raza Naqvi, Syda Fatima Usamn
Abstract:
Applications with higher fault tolerance index are considered more reliable and trustworthy to drive quality. In recent years application development has been shifted from traditional desktop and web to native and hybrid application(s) for the web and mobile platforms. With the emergence of Internet of things IOTs, cloud and big data trends, the need for measuring Fault Tolerance for these complex nature applications has increased to evaluate their performance. There is a phenomenal gap between fault tolerance metrics development and measurement. Classic quality metric models focused on metrics for traditional systems ignoring the essence of today’s applications software, hardware & deployment characteristics. In this paper, we have proposed simple metrics to measure fault tolerance considering general requirements for Web and Mobile Applications. We have aligned factors – subfactors, using GQM for metrics development considering the nature of mobile we apps. Systematic Mathematical formulation is done to measure metrics quantitatively. Three web mobile applications are selected to measure Fault Tolerance factors using formulated metrics. Applications are then analysed on the basis of results from observations in a controlled environment on different mobile devices. Quantitative results are presented depicting Fault tolerance in respective applications.Keywords: web and mobile applications, reliability, fault tolerance metric, quality metrics, GQM based metrics
Procedia PDF Downloads 349