Search results for: thermal energy storage.
10031 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA
Authors: Marek Dosbaba
Abstract:
Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data
Procedia PDF Downloads 10910030 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.Keywords: invar alloy, aluminum, phase equilibrium, thermal expansion coefficient, microstructure, tensile properties
Procedia PDF Downloads 37110029 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada
Authors: J. Jayasuriya
Abstract:
In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.Keywords: solar efficiency, building sustainability, PV panel, solar energy
Procedia PDF Downloads 13610028 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation
Procedia PDF Downloads 21010027 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks
Authors: Bukunola K. Oguntade, Gareth M. Watkins
Abstract:
The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc
Procedia PDF Downloads 13410026 Biofuel Production via Thermal Cracking of Castor Methyl Ester
Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli
Abstract:
Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification
Procedia PDF Downloads 24010025 Agegraphic Dark Energy with GUP
Authors: H. R. Fazlollahi
Abstract:
Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model.Keywords: generalized uncertainty principle, karolyhazy approach, agegraphic dark energy, cosmology
Procedia PDF Downloads 7310024 Decision Support Tool for Selecting Appropriate Sustainable Rainwater Harvesting Based System in Ibadan, Nigeria
Authors: Omolara Lade, David Oloke
Abstract:
The approach to water management worldwide is currently in transition, with a shift from centralised infrastructures to greater consideration of decentralised technologies, such as rainwater harvesting (RWH). However, in Nigeria, implementation of sustainable water management, such as RWH systems, is inefficient and social, environmental and technical barriers, concerns and knowledge gaps exist, which currently restrict its widespread utilisation. This inefficiency contributes to water scarcity, water-borne diseases, and loss of lives and property due to flooding. Meanwhile, several RWH technologies have been developed to improve SWM through both demand and storm-water management. Such technologies involve the use of reinforced concrete cement (RCC) storage tanks, surface water reservoirs and ground-water recharge pits as storage systems. A framework was developed to assess the significance and extent of water management problems, match the problems with existing RWH-based solutions and develop a robust ready-to-use decision support tool that can quantify the costs and benefits of implementing several RWH-based storage systems. The methodology adopted was the mixed method approach, involving a detailed literature review, followed by a questionnaire survey of household respondents, Nigerian Architects and Civil Engineers and focus group discussion with stakeholders. 18 selection attributes have been defined and three alternatives have been identified in this research. The questionnaires were analysed using SPSS, excel and selected statistical methods to derive weightings of the attributes for the tool. Following this, three case studies were modelled using RainCycle software. From the results, the MDA model chose RCC tank as the most appropriate storage system for RWH.Keywords: rainwater harvesting, modelling, hydraulic assessment, whole life cost, decision support system
Procedia PDF Downloads 37110023 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes
Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang
Abstract:
The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse
Procedia PDF Downloads 18210022 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate
Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua
Abstract:
As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation
Procedia PDF Downloads 28710021 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa
Authors: Christopher I. Ifeacho, Adeleke Omolade
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship
Procedia PDF Downloads 9910020 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 45910019 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si
Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff
Abstract:
Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples
Procedia PDF Downloads 31310018 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity generation is provided by using fossil based resources, energy is an important agenda for countries. Depletion of fossil resources, increasing awareness of climate change and global warming concerns are the major reasons for turning to alternative energy resources. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, wind energy is promising for Turkey whose installed power capacity increases approximately eight times between 2008 - seventh month of 2014. Signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish government has announced 2023 Vision (2023 targets) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). 2023 Energy targets can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Share of nuclear power plants in electricity generation will be 10% of total electricity generation by 2023. Dependence on foreign energy is reduced for sustainability and energy security. As of seventh month of 2014, total installed capacity of wind power plants is 3.42 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. MILRES is an important project aimed to promote the use of renewable sources in electricity generation. A 500 kW wind turbine will be produced in the first phase of project. Then 2.5 MW wind turbine will be manufactured domestically within this projectKeywords: wind energy, wind speed, 2023 vision, MILRES, wind energy potential in TURKEY
Procedia PDF Downloads 54510017 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM
Procedia PDF Downloads 38710016 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.Keywords: energy-efficient, fog computing, IoT, telehealth
Procedia PDF Downloads 7610015 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone
Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.Keywords: energy simulation, office building, tropical climate, zero energy buildings
Procedia PDF Downloads 18410014 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity
Authors: Dylber Qema
Abstract:
Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable
Procedia PDF Downloads 5910013 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 8410012 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object
Authors: Toufic Abd El-Latif Sadek
Abstract:
The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.Keywords: best timing, concrete areas, optimal, satellite thermal images
Procedia PDF Downloads 35410011 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials
Authors: A. K. Areamu, J. C. Igbeka
Abstract:
The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.Keywords: efficiency, energy, exergy, heating insolation
Procedia PDF Downloads 36710010 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System
Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe
Abstract:
Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.Keywords: constitutive model, polymer, mechanical testing, wrapping system
Procedia PDF Downloads 29310009 Evaluation of the Fire Propagation Characteristics of Thermoplastics
Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae
Abstract:
Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)
Procedia PDF Downloads 20210008 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 48510007 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials
Authors: Memet Vezir Kahraman, Ferhat Sen
Abstract:
This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate
Procedia PDF Downloads 16010006 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures
Authors: Zong-Sheng Chen
Abstract:
With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide
Procedia PDF Downloads 6710005 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 21210004 Lower Cretaceous Clay in Anti-Lebanon Mountains, Syria and their Importance in Ceramic Manufacturing
Authors: Abdul Salam Turkmani
Abstract:
The Lower Cretaceous rocks are exposed only in the mountains regions of Syria, such as the Anti- Lebanon mountain on the western side of Damascus. The lower cretaceous sequences are made up of different rocks. The upper and middle parts of the section are composed mainly of carbonate sediments and, less frequently, gypsum and anhydrite. The lower beds are mainly composed of sandstone, conglomerate and clay. Clay samples were collected from the study area, which is located about 45 km west of the city of Damascus, near the border village of Kfer Yabous and to the left of the Damascus -Beirut International Road, within the lower Cretaceous upper Aptian deposits. The properties of clay were carried out by X-ray diffraction (XRD) and, X-ray fluorescence (XRF) and Thermal Analysis (DTA-TG-DSC) techniques. The studied samples of clay were mainly composed of kaolinite, quartz, illite. Chemical analysis shows the content of SiO₂ varied between 46.06 to 73 % Al₂O₃ 14.55-26.56%, about the staining oxides (Fe₂O₃ + TiO₂), the total content is about 4.3 to 12.5%. The physical properties were determined by studying the behavior of the body before and after firing, showed low bending strength values (22.5 kg/cm²) after drying, and (about 247 kg/cm²) after firing at 1180°C, water absorption value was about 10%. The cubic thermal expansion coefficient at 1140°C is 213.77 x 10-7 /°C. All of the presented results confirm the suitability of this clay for the ceramic industry.Keywords: anti-Lebanon, Damascus, ceramic, clay, thermal analysis, thermal expansion coefficient
Procedia PDF Downloads 18710003 Thermoplastic Polyurethane/Barium Titanate Composites
Authors: Seyfullah Madakbaş, Ferhat Şen, Memet Vezir Kahraman
Abstract:
The aim of this study was to improve thermal stability, mechanical and surface properties of thermoplastic polyurethane (TPU) with the addition of BaTiO3. The TPU/ BaTiO3 composites having various ratios of TPU and BaTiO3 were prepared. The chemical structure of the prepared composites was investigated by FT-IR. FT-IR spectra of TPU/ barium titanate composites show that they successfully were prepared. Thermal stability of the samples was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The prepared composites showed high thermal stability, and the char yield increased as barium titanate content increased. The glass transition temperatures of the composites rise with the addition of barium titanate. Mechanical properties of the samples were characterized with stress-strain test. The mechanical properties of the TPU were increased with the contribution of the contribution of the barium titanate it increased. Hydrophobicity of the samples was determined by the contact angle measurements. The contact angles have the tendency to increase the hydrophobic behavior on the surface, when barium titanate was added into TPU. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM). SEM-EDS mapping images showed that barium titanate particles were dispersed homogeneously. Finally, the obtained results prove that the prepared composites have good thermal, mechanical and surface properties and that they can be used in many applications such as the electronic devices, materials engineering and other emergent.Keywords: barium titanate, composites, thermoplastic polyurethane, scanning electron microscopy
Procedia PDF Downloads 32910002 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler
Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel
Abstract:
A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties
Procedia PDF Downloads 494