Search results for: computer virus classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5003

Search results for: computer virus classification

3023 Efficient Reconstruction of DNA Distance Matrices Using an Inverse Problem Approach

Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii

Abstract:

We continue to consider one of the cybernetic methods in computational biology related to the study of DNA chains. Namely, we are considering the problem of reconstructing the not fully filled distance matrix of DNA chains. When applied in a programming context, it is revealed that with a modern computer of average capabilities, creating even a small-sized distance matrix for mitochondrial DNA sequences is quite time-consuming with standard algorithms. As the size of the matrix grows larger, the computational effort required increases significantly, potentially spanning several weeks to months of non-stop computer processing. Hence, calculating the distance matrix on conventional computers is hardly feasible, and supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains; then, we published algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. In this paper, we propose an algorithm for restoring the distance matrix for DNA chains, and the primary focus is on enhancing the algorithms that shape the greedy function within the branches and boundaries method framework.

Keywords: DNA chains, distance matrix, optimization problem, restoring algorithm, greedy algorithm, heuristics

Procedia PDF Downloads 116
3022 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 406
3021 Effects of Probiotics on Specific Immunity in Broiler Chicken in Syria

Authors: Moussa Majed, Omar Yaser

Abstract:

The main objective of this experiment was to study the impact of Probiotic compound on the specific immunity as the case study of infectious bursal disease. Total of 8000 one-day old Ross 108 broiler were randomly divided into two experimental groups; control group (4500 birds) and experimental group (3500 birds). Birds in two groups were reared under similar environmental conditions. Birds in control group received basal diets without probiotic whereas the birds in experimental one were fed basal diets supplemented with a commercial probiotic mixture) probiotic lacting k, which contains bacteria cells beyond to lactobacillus, Streptococcus and bifidobacterium genus that are isolated from gut microflora in healthy chickens(. The commercial probiotic were used according to the manufacturer instruction. 400 blood samples for each group were collected from wing vein every 5-7 days as interval period till 42 days old. Indirect Enzyme-Linked Immunosorbent Assay (ELISA) test was performed to detect the level of infectious bursal disease virus (IBDV) antibodies. The results clearly showed that the mean of immune titers was significantly (p= 0.03) higher in trail group than control one. The coefficient of variance percentages were 55% and 39% for control and trial groups respectively, this illustrates that homogeneity of immunity titers in the trail group was much better comparing with control group. The values of geometric means of titers in the control group and trial group were reported 3820 and 8133, respectively. The crude mortality rate in the experimental group was two times lower comparing with control group (14% and 28% respectively, p = 0.005

Keywords: probiotic, broiler chicken, infectious bursal disease, immunity, ELISA test

Procedia PDF Downloads 68
3020 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds

Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby

Abstract:

The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.

Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites

Procedia PDF Downloads 205
3019 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools

Authors: Tung-Hui Hsu, Wen-Yuh Jywe

Abstract:

Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.

Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6

Procedia PDF Downloads 380
3018 Trainees' Perception of Virtual Learning Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Mohd Faizal Amin Nur, Jamaluddin Hasim, Abd Samad Hasan Basari, Mohd Halim Sahelan

Abstract:

This study is aimed to investigate the suitability of Computer-Based Training (CBT) as one of the approaches in skills competency development at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (NYSI) Pagoh Muar Johor. This study has also examined the perception among trainees toward Virtual Learning Environment (VLE) as to realize the development of skills in Welding Technology. The significance of the study is to create a computer-based skills development approach in welding technology among new trainees in CIAST and IKBN as well as to cultivate the element of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-Workers) working in manufacturing industry in order to achieve the national vision which is to be an industrial nation in the year 2020. The design is a survey of research which using questionnaires as the instruments and is conducted towards 136 trainees from CIAST and IKBN. Data from the questionnaires is proceeding in a Statistical Package for Social Science (SPSS) in order to find the frequency, mean and chi-square testing. The findings of the study show the welding technology skills have developed in the trainees as a result of the application of the Virtual Reality simulator at a high level (mean=3.90) and the respondents agreed the skills could be embedded through the application of the Virtual Reality simulator (78.01%). The Study also found that there is a significant difference between trainee skill characteristics through the application of the Virtual Reality simulator (p<0.05). Thereby, the Virtual Reality simulator is suitable to be used in the development of welding skills among trainees through the skills training institute.

Keywords: computer-based training, virtual learning environment, welding technology, virtual reality simulator, virtual learning environment

Procedia PDF Downloads 424
3017 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 103
3016 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 224
3015 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 234
3014 Assessment of E-Learning Facilities in Open and Distance Learning and Information Need by Students

Authors: Sabo Elizabeth

Abstract:

Electronic learning is increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. This approach is important in human capital development. An investigation of open distance and e-learning facilities and information need by open and distance learning students was carried out in Jalingo, Nigeria. Structured questionnaires were administered to 70 registered ODL students of the NOUN. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Assessment of the effectiveness of ODL facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women. A large proportion of the respondents are married and there are more matured students in ODL compared to the youth. A high proportion of the ODL students obtained qualifications higher than the secondary school certificate. The proportion of computer literate ODL students was high, and large number of the students does not own a laptop computer. Inadequate e -books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities in the study areas. Inadequate computer facilities and power back up caused inconveniences and delay in administering and use of e learning facilities. To a high extent, open and distance learning students needed information on university time table and schedule of activities, availability and access to books (hard and e-books) and reference materials. The respondents emphasized that contact with course coordinators via internet will provide a better learning and academic performance.

Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test

Procedia PDF Downloads 323
3013 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 431
3012 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 307
3011 Photogrammetry and Topographic Information for Urban Growth and Change in Amman

Authors: Mahmoud M. S. Albattah

Abstract:

Urbanization results in the expansion of administrative boundaries, mainly at the periphery, ultimately leading to changes in landcover. Agricultural land, naturally vegetated land, and other land types are converted into residential areas with a high density of constructs, such as transportation systems and housing. In urban regions of rapid growth and change, urban planners need regular information on up to date ground change. Amman (the capital of Jordan) is growing at unprecedented rates, creating extensive urban landscapes. Planners interact with these changes without having a global view of their impact. The use of aerial photographs and satellite images data combined with topographic information and field survey could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.

Keywords: highway design, satellite technologies, remote sensing, GIS, image segmentation, classification

Procedia PDF Downloads 442
3010 Perception of Healthcare Workers Regarding the Psychological Impact of COVID-19 on Their Children

Authors: Saima Batool, Saima Rafique

Abstract:

Background and Objective: Pandemics like COVID-19 adversely affect children’s behavior and psychological development by disrupting routine life activities. Children of healthcare workers are exposed additionally due to the fear of parental exposure to the virus. The objective of this study was to assess the perception of frontline healthcare workers (HCWs) regarding the psychological impact of the COVID-19 pandemic on their children. We also sought to identify the difference in the psychological impact on children of male and female healthcare workers. Methods: A survey questionnaire was developed comprising 10 questions about the perception of HCWs regarding the psychological impact of COVID-19 on their children. It was distributed both online and face-to-face among 150 healthcare professionals working in training and non-training posts in 4 public and 5 nongovernment hospitals in Pakistan. The mean and standard deviation were calculated for each survey item using Statistical Package for the Social Sciences 26.0. Results: The response rate was 71.3%, and the majority (64.2%) of the healthcare professionals were ≥30 years of age. Ninety-two HCWs (85.98%) either agreed or strongly agreed that parental separation from their kids for long hours during the pandemic had a negative psychological impact on their children. There was a significant difference in the perceived psychological impact of COVID-19 on the children of male and female HCWs, with a mean survey score of 2.29 ± 1.82 and 1.69 ± 0.79, respectively (t = 2.29, p-value = 0.024). Conclusion: Children of healthcare workers experience more stress and anxiety because of long duty hours and working in high-risk settings. Continuous psychological support and counseling services may be adopted formally to prevent unforeseen adverse events or any long-term negative impact on their physical and mental health.

Keywords: healthcare workers, pandemic, COVID-19, anxiety, psychological

Procedia PDF Downloads 51
3009 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 729
3008 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example

Authors: Zhao Haoyue

Abstract:

Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.

Keywords: urban climate, GIS, heat island analysis, urban thermal environment

Procedia PDF Downloads 111
3007 Decision Trees Constructing Based on K-Means Clustering Algorithm

Authors: Loai Abdallah, Malik Yousef

Abstract:

A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.

Keywords: ensemble clustering, decision trees, classification, K nearest neighbors

Procedia PDF Downloads 189
3006 The Increase of Adolescent Obesity Rates after the COVID-19 Pandemic and Possible Obesity Prevention Programs for Implementation

Authors: Tatiana Pratt, Benyamin Hanasabzadeh, Panayiota Courelli

Abstract:

The COVID-19 pandemic is one of the largest global public health issues of this current century. COVID-19 puts people diagnosed with obesity at higher risk of not only contracting the virus but also being hospitalized and dying, making this a vital time to implement obesity prevention programs. However, COVID-19 is predicted to rapidly increase the obesity rate in the United States due to the mandatory sedentary lifestyle the pandemic demands; this is especially harmful to adolescent-aged children because it creates lifelong unhealthy habits and behaviors. Adolescent obesity prevention programs have been rigorously implemented throughout the last century to help diminish the ever-increasing adolescent obesity rate. Since the pandemic kept adolescents inside and away from in-person school, many programs have now become ineffective due to their in-person participation. Examples of in-person participation programs include school lunch programs, OSNAP and New Moves. Therefore, online programs or remote intervention measures are now more essential. This leads to programs such as Time2bHealthy, HEALTH[e]TEEN, and SWITCH should be looked at with more vitality. Adolescents have intertwined their lives with technology and screen usage. Therefore, online and remote prevention programs will continue to play a large role in the post-pandemic era. This literature review will be reviewing past and current adolescent obesity prevention programs and their effectiveness with the new remote, sedentary lifestyle adolescents. Furthermore, it will suggest new ways to more productively decrease adolescent obesity rates by analyzing the harmful factors that COVID-19 introduced into their lifestyles.

Keywords: adolescent, obesity, overweight, COVID-19, preventative care, public health, public policy, obesity prevention programs, online programs

Procedia PDF Downloads 237
3005 The Role of Academic Leaders at Jerash University in Crises Management 'Virus Corona as a Model'

Authors: Khaled M. Hama, Mohammed Al Magableh, Zaid Al Kuri, Ahmad Qayam

Abstract:

The study aimed to identify the role of academic leaders at Jerash University in crisis management from the faculty members' point of view, ‘the emerging Corona pandemic as a model’, as well as to identify the differences in the role of academic leaders at Jerash University in crisis management at the significance level (0.05 ≤ α) according to the study variables Gender Academic rank, years of experience, and identifying proposals that contribute to developing the performance of academic leaders at Jerash University in crisis management, ‘the Corona pandemic as a model’. The study was applied to a randomly selected sample of (72) faculty members at Jerash University, The researcher designed a tool for the study, which is the questionnaire, and it included two parts: the first part related to the personal data of the study sample members, and the second part was divided into five areas and (34) paragraphs to reveal the role of academic leaders at Jerash University in crisis management - the Corona pandemic as a model, it was confirmed From the validity and reliability of the tool, the study used the descriptive analytical method The study reached the following results: that the role of academic leaders at Jerash University in crisis management from the point of view of faculty members, ‘the emerging corona pandemic as a model’, came to a high degree, and there were no statistically significant differences at the level of statistical significance (α = 0.05) between the computational circles for the estimates of individuals The study sample for the role of academic leaders at Jerash University in crisis management is attributed to the study variables (gender, academic rank, and years of experience)

Keywords: academic leaders, crisis management, corona pandemic, Jerash University

Procedia PDF Downloads 52
3004 A Qualitative Study to Explore the Experiences of Muslim Nurses Working in an Acute Setting During the Covid-19 Pandemic

Authors: Sujatha Shanmugasundaram

Abstract:

Background: It has been since one year that COVID-19 has emerged into the world. Since then, healthcare professionals facing a great challenge in to fight against this deadly virus. According to World Health Organization (WHO) 2021, it is estimated that more than 131 million confirmed cases and 2million deaths around the world due to this pandemic. Nurses are the frontline workers who play a major role in safeguarding the lives of the people in acute care settings. Evidence suggests that there are numbers of research have been carried out on nurses' and healthcare provider’s experiences during the pandemic. But, unfortunately, there are no or little evidence available on Muslim nurse’s perspective. Hence, this research will investigate the experiences of Muslim nurses working in an acute care setting during the pandemic. Purpose: The purpose of the study is to explore the experiences of Muslim nurses working in an acute setting during the COVID-19 pandemic. Research Methods: A qualitative research approach will be utilized for the study. Semi-structured interview schedule will be used to collect the data. Face to face interviews will be conducted. All interviews will be conducted in Arabic, and it will be audio recorded. Verbatim will be noted. Muslim nurses working in an acute setting will be included in the study. Convenient sampling technique will be used to recruit the participants. Ethical approval will be obtained from the study sites. Strauss and Corbin's thematic analysis will be used to analyze the data. Conclusion: Considering that nurses are the frontline workers, they have a significant role in dealing with this COVID-19. It is a great challenge for the nurses working in an acute care setting. Thus, this study will bring out significant findings that will impact the nursing practice.

Keywords: acute care, COVID-19, experiences, muslim nurses

Procedia PDF Downloads 195
3003 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 85
3002 Transarterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC)

Authors: Ilirian Laçi, Alketa Spahiu

Abstract:

Modality of treatment in hepatocellular carcinoma (HCC) patients depends on the stage of the disease. The Barcelona Clinic Liver Cancer Classification (BCLC) is the preferred staging system. There are many patients initially present with intermediate-stage disease. For these patients, transarterial chemoembolization (TACE) is the treatment of choice. The differences in individual factors that are not captured by the BCLC framework, such as the tumor growth pattern, degree of hypervascularity, and vascular supply, complicate further evaluation of these patients. Because of these differences, not all patients benefit equally from TACE. Several tools have been devised to aid the decision-making process, which have shown promising initial results but have failed external evaluation and have not been translated to the clinic aspects. Criteria for treatment decisions in daily clinical practice are needed in all stages of the disease.

Keywords: hepatocellular carcinoma, transarterial chemoembolization, TACE, liver

Procedia PDF Downloads 96
3001 “Presently”: A Personal Trainer App to Self-Train and Improve Presentation Skills

Authors: Shyam Mehraaj, Samanthi E. R. Siriwardana, Shehara A. K. G. H., Wanigasinghe N. T., Wandana R. A. K., Wedage C. V.

Abstract:

A presentation is a critical tool for conveying not just spoken information but also a wide spectrum of human emotions. The single most effective thing to make the presentation successful is to practice it beforehand. Preparing for a presentation has been shown to be essential for improving emotional control, intonation and prosody, pronunciation, and vocabulary, as well as the quality of the presentation slides. As a result, practicing has become one of the most critical parts of giving a good presentation. In this research, the main focus is to analyze the audio, video, and slides of the presentation uploaded by the presenters. This proposed solution is based on the Natural Language Processing and Computer Vision techniques to cater to the requirement for the presenter to do a presentation beforehand using a mobile responsive web application. The proposed system will assist in practicing the presentation beforehand by identifying the presenters’ emotions, body language, tonality, prosody, pronunciations and vocabulary, and presentation slides quality. Overall, the system will give a rating and feedback to the presenter about the performance so that the presenters’ can improve their presentation skills.

Keywords: presentation, self-evaluation, natural learning processing, computer vision

Procedia PDF Downloads 117
3000 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real-time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Therefore, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Canny edge detection is one of the common blocks in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: high level synthesis, canny edge detection, hardware accelerators, computer vision

Procedia PDF Downloads 478
2999 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel, S. P. Dave, M. V Shah

Abstract:

Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.

Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity

Procedia PDF Downloads 67
2998 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique

Authors: Veysel Çelik, Aynur Aker, Ebru Güç

Abstract:

Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.

Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy

Procedia PDF Downloads 124
2997 Clinical, Demographic and Molecular Characterization of Dengue, Chikungunya and Zika Viruses Causing Hemorrhagic Fever in North India

Authors: Suruchi Shukla, Shantanu Prakash, Amita Jain

Abstract:

Introduction: Arboviral diseases are one of the most common causes of viral hemorrhagic fever (VHF). Of which, Dengue and Chikungunya pose a significant health problem in India. Arbovirus has a tendency to cross the territories and emerge in the new region. Considering the above issues, in the current study active surveillance was conducted among viral hemorrhagic fever (VHF) cases reported from Uttar Pradesh (UP), India. We studied the arboviral etiology of VHF; mainly Dengue, Chikungunya, and ZIKA. Methods: Clinical samples of 465 suspected VHF cases referred to tertiary care referral center of UP, India were enrolled in the study during a period from 15th May 2016 to 9th March 2018. Serum specimens were collected and analyzed for the presence of Dengue, Chikungunya, and ZIKA either by serology and/or by molecular assays. Results: Of all tested, 165 (35.4%) cases were positive for either Dengue or Chikungunya. Dengue (21.2%) was found to be the most prevalent, followed by Chikungunya, (6.6%). None of the cases tested positive for ZIKA virus. Serum samples of 35 (7.5%) cases were positive for both Dengue and Chikungunya. DEN-2 serotype was the most predominant serotype. Phylogenetic and sequence analysis of DEN-2 strains showed 100% clustering with the Cosmopolitan genotype strain. Bleeding from several sites, jaundice, abdominal pain, arthralgia, haemoconcentration, and thrombocytopenia were significantly higher in dengue hemorrhagic cases. However, the rash was significantly more common in Chikungunya patients. Most of the Dengue and Chikungunya positive cases (Age group 6-40 years) were seen in post monsoon season (September to November). Conclusion: Only one-third of total VHF cases are positive for either Dengue/Chikungunya or both. This necessitates the screening of other etiologies capable of causing hemorrhagic manifestations.

Keywords: viral hemorrhagic fever, dengue, chikungunya, zika, India

Procedia PDF Downloads 153
2996 A Comparative Study of Motion Events Encoding in English and Italian

Authors: Alfonsina Buoniconto

Abstract:

The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.

Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type

Procedia PDF Downloads 258
2995 Challenges of Online Education and Emerging E-Learning Technologies in Nigerian Tertiary Institutions Using Adeyemi College of Education as a Case Study

Authors: Oluwatofunmi Otobo

Abstract:

This paper presents a review of the challenges of e-learning and e-learning technologies in tertiary institutions. This review is based on the researchers observations of the challenges of making use of ICT for learning in Nigeria using Adeyemi College of Education as a case study; this is in comparison to tertiary institutions in the UK, US and other more developed countries. In Nigeria and probably Africa as a whole, power is the major challenge. Its inconsistency and fluctuations pose the greatest challenge to making use of online education inside and outside the classroom. Internet and its supporting infrastructures in many places in Nigeria are slow and unreliable. This, in turn, could frustrate any attempt at making use of online education and e-learning technologies. Lack of basic knowledge of computer, its technologies and facilities could also prove to be a challenge as many young people up until now are yet to be computer literate. Personal interest on both the parts of lecturers and students is also a challenge. Many people are not interested in learning how to make use of technologies. This makes them resistant to changing from the ancient methods of doing things. These and others were reviewed by this paper, suggestions, and recommendations were proffered.

Keywords: education, e-learning, Nigeria, tertiary institutions

Procedia PDF Downloads 198
2994 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 88