Search results for: utilizing radio
276 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 151275 Postharvest Losses and Handling Improvement of Organic Pak-Choi and Choy Sum
Authors: Pichaya Poonlarp, Danai Boonyakiat, C. Chuamuangphan, M. Chanta
Abstract:
Current consumers’ behavior trends have changed towards more health awareness, the well-being of society and interest of nature and environment. The Royal Project Foundation is, therefore, well aware of organic agriculture. The project only focused on using natural products and utilizing its highland biological merits to increase resistance to diseases and insects for the produce grown. The project also brought in basic knowledge from a variety of available research information, including, but not limited to, improvement of soil fertility and a control of plant insects with biological methods in order to lay a foundation in developing and promoting farmers to grow quality produce with a high health safety. This will finally lead to sustainability for future highland agriculture and a decrease of chemical use on the highland area which is a source of natural watershed. However, there are still shortcomings of the postharvest management in term of quality and losses, such as bruising, rottenness, wilting and yellowish leaves. These losses negatively affect the maintenance and a shelf life of organic vegetables. Therefore, it is important that a research study of the appropriate and effective postharvest management is conducted for an individual organic vegetable to minimize product loss and find root causes of postharvest losses which would contribute to future postharvest management best practices. This can be achieved through surveys and data collection from postharvest processes in order to conduct analysis for causes of postharvest losses of organic pak-choi, baby pak-choi, and choy sum. Consequently, postharvest losses reduction strategies of organic vegetables can be achieved. In this study, postharvest losses of organic pak choi, baby pak-choi, and choy sum were determined at each stage of the supply chain starting from the field after harvesting, at the Development Center packinghouse, at Chiang Mai packinghouse, at Bangkok packing house and at the Royal Project retail shop in Chiang Mai. The results showed that postharvest losses of organic pak-choi, baby pak-choi, and choy sum were 86.05, 89.05 and 59.03 percent, respectively. The main factors contributing to losses of organic vegetables were due to mechanical damage and underutilized parts and/or short of minimum quality standard. Good practices had been developed after causes of losses were identified. Appropriate postharvest handling and management, for example, temperature control, hygienic cleaning, and reducing the duration of the supply chain, postharvest losses of all organic vegetables should be able to remarkably reduced postharvest losses in the supply chain.Keywords: postharvest losses, organic vegetables, handling improvement, shelf life, supply chain
Procedia PDF Downloads 478274 Process Improvement and Redesign of the Immuno Histology (IHC) Lab at MSKCC: A Lean and Ergonomic Study
Authors: Samantha Meyerholz
Abstract:
MSKCC offers patients cutting edge cancer care with the highest quality standards. However, many patients and industry members do not realize that the operations of the Immunology Histology Lab (IHC) are the backbone for carrying out this mission. The IHC lab manufactures blocks and slides containing critical tissue samples that will be read by a Pathologist to diagnose and dictate a patient’s treatment course. The lab processes 200 requests daily, leading to the generation of approximately 2,000 slides and 1,100 blocks each day. Lab material is transported through labeling, cutting, staining and sorting manufacturing stations, while being managed by multiple techs throughout the space. The quality of the stain as well as wait times associated with processing requests, is directly associated with patients receiving rapid treatments and having a wider range of care options. This project aims to improve slide request turnaround time for rush and non-rush cases, while increasing the quality of each request filled (no missing slides or poorly stained items). Rush cases are to be filled in less than 24 hours, while standard cases are allotted a 48 hour time period. Reducing turnaround times enable patients to communicate sooner with their clinical team regarding their diagnosis, ultimately leading faster treatments and potentially better outcomes. Additional project goals included streamlining tech and material workflow, while reducing waste and increasing efficiency. This project followed a DMAIC structure with emphasis on lean and ergonomic principles that could be integrated into an evolving lab culture. Load times and batching processes were analyzed using process mapping, FMEA analysis, waste analysis, engineering observation, 5S and spaghetti diagramming. Reduction of lab technician movement as well as their body position at each workstation was of top concern to pathology leadership. With new equipment being brought into the lab to carry out workflow improvements, screen and tool placement was discussed with the techs in focus groups, to reduce variation and increase comfort throughout the workspace. 5S analysis was completed in two phases in the IHC lab, helping to drive solutions that reduced rework and tech motion. The IHC lab plans to continue utilizing these techniques to further reduce the time gap between tissue analysis and cancer care.Keywords: engineering, ergonomics, healthcare, lean
Procedia PDF Downloads 223273 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study
Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom
Abstract:
In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.Keywords: adhesion, cementite, galling, molecular dynamics
Procedia PDF Downloads 301272 The Impact of Intimate Partner Violence on Women’s Mental Health in Kenya
Authors: Josephine Muchiri, Makena Muriithi
Abstract:
Adverse mental health consequences are experienced by those that have been touched by Intimate Partner Violence (IPV), whether directly or indirectly. These negative effects are felt not only in the short term but in years to come. It is important to examine the prevalence and co-occurrence of mental disorders in order to provide strategic interventions for women who have experienced IPV. The aim of this study was to examine the prevalence and comorbidity of post-traumatic stress disorder (PTSD), Depression, and Anxiety among women who had experienced intimate Partner violence in two selected informal settlements in Nairobi County, Kenya. Participants were 116 women (15-60 years) selected through purposive and snowball sampling from the low social, economic settlements (Kawangware and Kibera) in Nairobi, Kenya. A social demographic questionnaire and the Woman Abuse Screening Tool (WAST) were used to collect data on intimate partner violence experiences. The PTSD Checklist for DSM-5 (PCL-5), Beck’s Depression Inventory, and the Beck’s Anxiety Inventory assessed for post-traumatic stress disorder, depression, and anxiety, respectively. Data analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 29, utilizing descriptive and correlation analyses. Findings indicated that the women had undergone various forms of abuse from their intimate partners, which were physical abuse 111(92.5%), sexual abuse 70(88.6%), and verbal abuse 92(93.9%). The prevalence of the mental disorders was PTSD 47(32.4%); M= 44.11, S.D =14.67, depression was the highest at n=131(90.3%; M=33.37±9.98) with the levels of depression having varying prevalence rates where severe depression had the highest representation [moderate: n= 35; 24.1%, severe: n=69 (47.6%) and extremely severe: n=27(18.6%)]. Anxiety had the second highest prevalence of n=99 (68.8%; M= 28.55±13.63) with differing prevalence rates in the levels of anxiety which were normal anxiety: 45(31.3%), moderate anxiety n=62(43.1%) and severe anxiety: n=37(25.7%). Regarding comorbidities, the Pearson correlation test showed that there was a significant (p=0.000) positive relationship between PTSD and depression (r=0.379; p=.000), PTSD and anxiety (r=0.624; p=.000), and depression and anxiety (r=0.386; p=.000) such that increase in one disorder concomitantly led to increase of the other two disorders; hence comorbidity of the three disorders was ascertained. Conclusion: The study asserted the adverse impacts of IPV on women’s mental well-being, where the prevalence of PTSD, depression, and anxiety was established. Almost all the women had depressive symptoms; whereas more than half had anxiety and slightly more than a third had PTSD. Regarding the severity levels of anxiety and depression, almost half of the women with depression had severe depression whereas moderate anxiety was more prevalent for those with anxiety. The three disorders were found to co-occur where comorbidities of PTSD and anxiety had the highest probability of co-occurrence. It is thus recommended that mental health interventions with a focus on the three disorders be offered for women undergoing IPV.Keywords: anxiety, comorbidity, depression, intimate partner violence, post-traumatic stress disorder
Procedia PDF Downloads 79271 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study
Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa
Abstract:
Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2
Procedia PDF Downloads 94270 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications
Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi
Abstract:
This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications
Procedia PDF Downloads 139269 The Impact of Migrants’ Remittances on Household Poverty and Income Inequality: A Case Study of Mazar-i-Sharif, Balkh Province, Afghanistan
Authors: Baqir Khawari
Abstract:
This study critically examines the influence of remittances on household poverty and income inequality in Mazar-i-Sharif, Balkh Province, Afghanistan, utilizing robust OLS and Logit models with a rigorous multi-random sampling method. The empirical findings reveal that a 1% increase in per capita international remittances is associated with a substantial 0.071% and 0.059% rise in per capita income during the fiscal years 2019/20 and 2020/21, respectively. Furthermore, this increase significantly mitigates the per capita depth of poverty by 0.0272% and 0.025% and the severity of poverty by 0.0149% and 0.0145% over the same periods. Notably, the impact of international remittances on poverty alleviation surpasses that of internal remittances. In addressing income inequality, the analysis demonstrates that remittances contribute to a reduction in the Gini coefficient by 2% in 2019/20 and 7% in 2020/21, underscoring their pivotal role in promoting equitable economic distribution. However, the COVID-19 pandemic has posed significant challenges, diminishing remittance flows and, consequently, their positive effects on household welfare. The logistic regression results further corroborate these findings, indicating that increased per capita remittances, both international and internal, markedly decrease the likelihood of households falling below the poverty line. Specifically, a 1% rise in per capita external remittances reduces this likelihood by 4.5% in 2019/20 and by 3.7% in 2020/21, while internal remittances decrease it by 3% and 2.4%, respectively. The study also explores the demographic determinants of poverty. Larger household sizes and older household heads correlate positively with poverty, whereas higher education levels among household heads and members, and a greater proportion of male members, correlate negatively with poverty incidence and severity. Female-headed households are disproportionately affected by poverty, exacerbated by socio-cultural restrictions. Despite these adversities, the data suggest that remittances are a crucial instrument for poverty alleviation and income inequality reduction in Afghanistan. The findings advocate for policy interventions aimed at enhancing formal remittance channels, promoting education, and empowering women. Effective governance and sustained international assistance are essential to harness the full potential of remittances in combating poverty and inequality. This study highlights the need for strategic, multifaceted approaches to foster sustainable economic development in Afghanistan’s challenging socio-political context.Keywords: migration, remittances, poverty, inequality, COVID-19, Afghanistan
Procedia PDF Downloads 36268 A New Second Tier Screening for Congenital Adrenal Hyperplasia Utilizing One Dried Blood Spot
Authors: Engy Shokry, Giancarlo La Marca, Maria Luisa Della Bona
Abstract:
Newborn screening for Congenital Adrenal Hyperplasia (CAH) relies on quantification of 17α-hydroxyprogesterone using enzyme immunoassays. These assays, in spite of being rapid, readily available and easy to perform, its reliability was found questionable due to lack of selectivity and specificity resulting in large number of false-positives, consequently family anxiety and associated hospitalization costs. To improve specificity of conventional 17α-hydroxyprogesterone screening which may experience false transient elevation in preterm, low birth weight or acutely ill neonates, steroid profiling by LC-MS/MS as a second-tier test was implemented. Unlike the previously applied LC-MS/MS methods, with the disadvantage of requiring a relatively high number of blood drops. Since newborn screening tests are increasing, it is necessary to minimize the sample volume requirement to make the maximum use of blood samples collected on filter paper. The proposed new method requires just one 3.2 mm dried blood spot (DBS) punch. Extraction was done using methanol: water: formic acid (90:10:0.1, v/v/v) containing deuterium labelled internal standards. Extracts were evaporated and reconstituted in 10 % acetone in water. Column switching strategy for on-line sample clean-up was applied to improve the chromatographic run. The first separative step retained the investigated steroids and passed through the majority of high molecular weight impurities. After the valve switching, the investigated steroids are back flushed from the POROS® column onto the analytical column and separated using gradient elution. Found quantitation limits were 5, 10 and 50 nmol/L for 17α-hydroxyprogesterone, androstenedione and cortisol respectively with mean recoveries of between 98.31-103.24 % and intra-/ inter-assay CV% < 10 % except at LLOQ. The method was validated using standard addition calibration and isotope dilution strategies. Reference ranges were determined by analysing samples from 896 infants of various ages at the time of sample collection. The method was also applied on patients with confirmed CAH. Our method represents an attractive combination of low sample volume requirement, minimal sample preparation time without derivatization and quick chromatography (5 min). The three steroid profile and the concentration ratios (17OHP + androstenedione/cortisol) allowed better screening outcomes of CAH reducing false positives, associated costs and anxiety.Keywords: congenital adrenal hyperplasia (CAH), 17α-hydroxyprogesterone, androstenedione, cortisol, LC-MS/MS
Procedia PDF Downloads 439267 A Temporary Shelter Proposal for Displaced People
Authors: İrem Yetkin, Feray Maden, Seda Tosun, Yenal Akgün, Özgür Kilit, Koray Korkmaz, Gökhan Kiper, Mustafa Gündüzalp
Abstract:
Forced migration, whether caused by conflicts or other factors, frequently places individuals in vulnerable situations, necessitating immediate access to shelter. To promptly address the immediate needs of affected individuals, temporary shelters are often established. These shelters are characterized by their adaptable and functional nature, encompassing lightweight and sustainable structural systems, rapid assembly capabilities, modularity, and transportability. The shelter design is contingent upon demand, resulting in distinct phases for different structural forms. A multi-phased shelter approach covers emergency response, temporary shelter, and permanent reconstruction. Emergency shelters play a critical role in providing immediate life-saving aid, while temporary and transitional shelters, which are also called “t-shelters,” offer longer-term living environments during the recovery and rebuilding phases. Among these, temporary shelters are more extensively covered in the literature due to their diverse inhabiting functions. The roles of emergency shelters and temporary shelters are inherently separate, addressing distinct aspects of sheltering processes. Given their prolonged usage, temporary shelters are built for greater durability compared to emergency shelters. Nonetheless, inadequacies in temporary shelters can lead to challenges in ensuring habitability. Issues like non-expandable structures unsuitable for accommodating large families, the use of short-term shelters that worsen conditions, non-waterproof materials providing insufficient protection against bad weather conditions, and complex installation systems contribute to these problems. Given the aforementioned problems, there arises a need to develop adaptive shelters featuring lightweight components for ease of transport, possess the ability for rapid assembly, and utilize durable materials to withstand adverse weather conditions. In this study, first, the state-of-the-art on temporary shelters is presented. Then, an adaptive temporary shelter composed of foldable plates is proposed, which can easily be assembled and transportable. The proposed shelter is deliberated upon its movement capacity, transportability, and flexibility. This study makes a valuable contribution to the literature since it not only offers a systematic analysis of temporary shelters utilizing kinetic systems but also presents a practical solution that meets the necessary design requirements.Keywords: deployable structures, foldable plates, forced migration, temporary shelters
Procedia PDF Downloads 74266 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth
Authors: Kunihisa Kakumoto
Abstract:
“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.Keywords: solar community, sustainability, prototype, algorithmic simulation
Procedia PDF Downloads 62265 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection
Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh
Abstract:
As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.Keywords: microbes, inoculants, fertilization, soil health, conventional.
Procedia PDF Downloads 84264 Monitoring Potential Temblor Localities as a Supplemental Risk Control System
Authors: Mikhail Zimin, Svetlana Zimina, Maxim Zimin
Abstract:
Without question, the basic method of prevention of human and material losses is the provision for adequate strength of constructions. At the same time, seismic load has a stochastic character. So, at all times, there is little danger of earthquake forces exceeding the selected design load. This risk is very low, but the consequences of such events may be extremely serious. Very dangerous are also occasional mistakes in seismic zoning, soil conditions changing before temblors, and failure to take into account hazardous natural phenomena caused by earthquakes. Besides, it is known that temblors detrimentally affect the environmental situation in regions where they occur, resulting in panic and worsening various disease courses. It may lead to mistakes of personnel of hazardous production facilities like the production and distribution of gas and oil, which may provoke severe accidents. In addition, gas and oil pipelines often have long mileage and cross many perilous zones by contrast with buildings. This situation increases the risk of heavy accidents. In such cases, complex monitoring of potential earthquake localities would be relevant. Even though the number of successful real-time forecasts of earthquakes is not great, it is well in excess, such as may be under random guessing. Experimental performed time-lapse study and analysis consist of searching seismic, biological, meteorological, and light earthquake precursors, processing such data with the help of fuzzy sets, collecting weather information, utilizing a database of terrain, and computing risk of slope processes under the temblor in a given setting. Works were done in a real-time environment and broadly acceptable results took place. Observations from already in-place seismic recording systems are used. Furthermore, a look back study of precursors of known earthquakes is done. Situations before Ashkhabad, Tashkent, and Haicheng seismic events are analyzed. Fairish findings are obtained. Results of earthquake forecasts can be used for predicting dangerous natural phenomena caused by temblors such as avalanches and mudslides. They may also be utilized for prophylaxis of some diseases and their complications. Relevant software is worked out too. It should be emphasized that such control does not require serious financial expenses and can be performed by a small group of professionals. Thus, complex monitoring of potential earthquake localities, including short-term earthquake forecasts and analysis of possible hazardous consequences of temblors, may further the safety of pipeline facilities.Keywords: risk, earthquake, monitoring, forecast, precursor
Procedia PDF Downloads 24263 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection
Authors: Pukhrambam Helena Chanu, Janardan Yadav
Abstract:
This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.
Procedia PDF Downloads 49262 Epigenetic and Archeology: A Quest to Re-Read Humanity
Authors: Salma A. Mahmoud
Abstract:
Epigenetic, or alteration in gene expression influenced by extragenetic factors, has emerged as one of the most promising areas that will address some of the gaps in our current knowledge in understanding patterns of human variation. In the last decade, the research investigating epigenetic mechanisms in many fields has flourished and witnessed significant progress. It paved the way for a new era of integrated research especially between anthropology/archeology and life sciences. Skeletal remains are considered the most significant source of information for studying human variations across history, and by utilizing these valuable remains, we can interpret the past events, cultures and populations. In addition to archeological, historical and anthropological importance, studying bones has great implications in other fields such as medicine and science. Bones also can hold within them the secrets of the future as they can act as predictive tools for health, society characteristics and dietary requirements. Bones in their basic forms are composed of cells (osteocytes) that are affected by both genetic and environmental factors, which can only explain a small part of their variability. The primary objective of this project is to examine the epigenetic landscape/signature within bones of archeological remains as a novel marker that could reveal new ways to conceptualize chronological events, gender differences, social status and ecological variations. We attempted here to address discrepancies in common variants such as methylome as well as novel epigenetic regulators such as chromatin remodelers, which to our best knowledge have not yet been investigated by anthropologists/ paleoepigenetists using plethora of techniques (biological, computational, and statistical). Moreover, extracting epigenetic information from bones will highlight the importance of osseous material as a vector to study human beings in several contexts (social, cultural and environmental), and strengthen their essential role as model systems that can be used to investigate and construct various cultural, political and economic events. We also address all steps required to plan and conduct an epigenetic analysis from bone materials (modern and ancient) as well as discussing the key challenges facing researchers aiming to investigate this field. In conclusion, this project will serve as a primer for bioarcheologists/anthropologists and human biologists interested in incorporating epigenetic data into their research programs. Understanding the roles of epigenetic mechanisms in bone structure and function will be very helpful for a better comprehension of their biology and highlighting their essentiality as interdisciplinary vectors and a key material in archeological research.Keywords: epigenetics, archeology, bones, chromatin, methylome
Procedia PDF Downloads 108261 Making Unorganized Social Groups Responsible for Climate Change: Structural Analysis
Authors: Vojtěch Svěrák
Abstract:
Climate change ethics have recently shifted away from individualistic paradigms towards concepts of shared or collective responsibility. Despite this evolving trend, a noticeable gap remains: a lack of research exclusively addressing the moral responsibility of specific unorganized social groups. The primary objective of the article is to fill this gap. The article employs the structuralist methodological approach proposed by some feminist philosophers, utilizing structural analysis to explain the existence of social groups. The argument is made for the integration of this framework with the so-called forward-looking Social Connection Model (SCM) of responsibility, which ascribes responsibilities to individuals based on their participation in social structures. The article offers an extension of this model to justify the responsibility of unorganized social groups. The major finding of the study is that although members of unorganized groups are loosely connected, collectively they instantiate specific external social structures, share social positioning, and the notion of responsibility could be based on that. Specifically, if the structure produces harm or perpetuates injustices, and the group both benefits from and possesses the capacity to significantly influence the structure, a greater degree of responsibility should be attributed to the group as a whole. This thesis is applied and justified within the context of climate change, based on the asymmetrical positioning of different social groups. Climate change creates a triple inequality: in contribution, vulnerability, and mitigation. The study posits that different degrees of group responsibility could be drawn from these inequalities. Two social groups serve as a case study for the article: first, the Pakistan lower class, consisting of people living below the national poverty line, with a low greenhouse gas emissions rate, severe climate change-related vulnerability due to the lack of adaptation measures, and with very limited options to participate in the mitigation of climate change. Second, the so-called polluter elite, defined by members' investments in polluting companies and high-carbon lifestyles, thus with an interest in the continuation of structures leading to climate change. The first identified group cannot be held responsible for climate change, but their group interest lies in structural change and should be collectively maintained. On the other hand, the responsibility of the second identified group is significant and can be fulfilled by a justified demand for some political changes. The proposed approach of group responsibility is suggested to help navigate climate justice discourse and environmental policies, thus helping with the sustainability transition.Keywords: collective responsibility, climate justice, climate change ethics, group responsibility, social ontology, structural analysis
Procedia PDF Downloads 60260 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process
Authors: Venkata Ramanaiah, Shabina Khanam
Abstract:
Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.Keywords: coal consumption, energy conservation, process integration, sponge iron plant
Procedia PDF Downloads 144259 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 164258 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis
Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman
Abstract:
Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness
Procedia PDF Downloads 88257 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources
Authors: Ashley Hobson, Ashley Efaw
Abstract:
Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.Keywords: professionalism, assessments, student learning, student preparedness, ethical practice
Procedia PDF Downloads 43256 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 88255 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations
Authors: Till Gramberg
Abstract:
In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering
Procedia PDF Downloads 83254 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 93253 Technology Changing Senior Care
Authors: John Kosmeh
Abstract:
Introduction – For years, senior health care and skilled nursing facilities have been plagued with the dilemma of not having the necessary tools and equipment to adequately care for senior residents in their communities. This has led to high transport rates to emergency departments and high 30-day readmission rates, costing billions of unnecessary dollars each year, as well as quality assurance issues. Our Senior care telemedicine program is designed to solve this issue. Methods – We conducted a 1-year pilot program using our technology coupled with our 24/7 telemedicine program with skilled nursing facilities in different parts of the United States. We then compared transports rates and 30-day readmission rates to previous years before the use of our program, as well as transport rates of other communities of similar size not using our program. This data was able to give us a clear and concise look at the success rate of reducing unnecessary transport and readmissions as well as cost savings. Results – A 94% reduction nationally of unnecessary out-of-facility transports, and to date, complete elimination of 30-day readmissions. Our virtual platform allowed us to instruct facility staff on the utilization of our tools and system as well as deliver treatment by our ER-trained providers. Delay waiting for PCP callbacks was eliminated. We were able to obtain lung, heart, and abdominal ultrasound imaging, 12 lead EKG, blood labs, auscultate lung and heart sounds, and collect other diagnostic tests at the bedside within minutes, providing immediate care and allowing us to treat residents within the SNF. Are virtual capabilities allowed for loved ones, family members, and others who had medical power of attorney to virtually connect with us at the time of visit, to speak directly with the medical provider, providing increased confidence in the decision to treat the resident in-house. The decline in transports and readmissions will greatly reduce governmental cost burdens, as well as fines imposed on SNF for high 30-day readmissions, reduce the cost of Medicare A readmissions, and significantly impact the number of patients visiting overcrowded ERs. Discussion – By utilizing our program, SNF can effectively reduce the number of unnecessary transports of residents, as well as create significant savings from loss of day rates, transportation costs, and high CMS fines. The cost saving is in the thousands monthly, but more importantly, these facilities can create a higher quality of life and medical care for residents by providing definitive care instantly with ER-trained personnel.Keywords: senior care, long term care, telemedicine, technology, senior care communities
Procedia PDF Downloads 94252 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 83251 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders
Authors: Brad Stappenbelt
Abstract:
The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy
Procedia PDF Downloads 148250 Time of Death Determination in Medicolegal Death Investigations
Authors: Michelle Rippy
Abstract:
Medicolegal death investigation historically is a field that does not receive much research attention or advancement, as all of the subjects are deceased. Public health threats, drug epidemics and contagious diseases are typically recognized in decedents first, with thorough and accurate death investigations able to assist in epidemiology research and prevention programs. One vital component of medicolegal death investigation is determining the decedent’s time of death. An accurate time of death can assist in corroborating alibies, determining sequence of death in multiple casualty circumstances and provide vital facts in civil situations. Popular television portrays an unrealistic forensic ability to provide the exact time of death to the minute for someone found deceased with no witnesses present. The actuality of unattended decedent time of death determination can generally only be narrowed to a 4-6 hour window. In the mid- to late-20th century, liver temperatures were an invasive action taken by death investigators to determine the decedent’s core temperature. The core temperature was programmed into an equation to determine an approximate time of death. Due to many inconsistencies with the placement of the thermometer and other variables, the accuracy of the liver temperatures was dispelled and this once common place action lost scientific support. Currently, medicolegal death investigators utilize three major after death or post-mortem changes at a death scene. Many factors are considered in the subjective determination as to the time of death, including the cooling of the decedent, stiffness of the muscles, release of blood internally, clothing, ambient temperature, disease and recent exercise. Current research is utilizing non-invasive hospital grade tympanic thermometers to measure the temperature in the each of the decedent’s ears. This tool can be used at the scene and in conjunction with scene indicators may provide a more accurate time of death. The research is significant and important to investigations and can provide an area of accuracy to a historically inaccurate area, considerably improving criminal and civil death investigations. The goal of the research is to provide a scientific basis to unwitnessed deaths, instead of the art that the determination currently is. The research is currently in progress with expected termination in December 2018. There are currently 15 completed case studies with vital information including the ambient temperature, decedent height/weight/sex/age, layers of clothing, found position, if medical intervention occurred and if the death was witnessed. This data will be analyzed with the multiple variables studied and available for presentation in January 2019.Keywords: algor mortis, forensic pathology, investigations, medicolegal, time of death, tympanic
Procedia PDF Downloads 120249 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 39248 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya
Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough
Abstract:
The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection
Procedia PDF Downloads 276247 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health
Authors: Minna Pikkarainen, Yueqiang Xu
Abstract:
The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.Keywords: blockchain, health data, platform, action design
Procedia PDF Downloads 100