Search results for: student network
5218 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 845217 Changing the Way South Africa Think about Parking Provision at Tertiary Institutions
Authors: M. C. Venter, G. Hitge, S. C. Krygsman, J. Thiart
Abstract:
For decades, South Africa has been planning transportation systems from a supply, rather than a demand side, perspective. In terms of parking, this relates to requiring the minimum parking provision that is enforced by city officials. Newer insight is starting to indicate that South Africa needs to re-think this philosophy in light of a new policy environment that desires a different outcome. Urban policies have shifted from reliance on the private car for access, to employing a wide range of alternative modes. Car dominated travel is influenced by various parameters, of which the availability and location of parking plays a significant role. The question is therefore, what is the right strategy to achieve the desired transport outcomes for SA. The focus of this paper is used to assess this issue with regard to parking provision, and specifically at a tertiary institution. A parking audit was conducted at the Stellenbosch campus of Stellenbosch University, monitoring occupancy at all 60 parking areas, every hour during business hours over a five-day period. The data from this survey was compared with the prescribed number of parking bays according to the Stellenbosch Municipality zoning scheme (requiring a minimum of 0.4 bays per student). The analysis shows that by providing 0.09 bays per student, the maximum total daily occupation of all the parking areas did not exceed an 80% occupation rate. It is concluded that the prevailing parking standards are not supportive of the new urban and transport policy environment, but that it is extremely conservative from a practical demand point of view.Keywords: parking provision, parking requirements, travel behaviour, travel demand management
Procedia PDF Downloads 1795216 Research on the Internal Mechanism of Overseas Market Opportunity Construction of the Emerging-Market Multinational Enterprises
Authors: Jie Zhang, Chaomin Zhang
Abstract:
Based on the network theory, this paper selects three Emerging-Market Multinationals Enterprises (EMNEs) as the research object and takes the typical overseas market opportunities constructed by them as the analysis unit to research the internal mechanism of overseas market opportunity construction of the EMNEs. The results show that: (1) EMNEs overseas market opportunity construction is a complex process, through the continuous interaction between enterprises and entities in the internal and external networks to achieve opportunity prototype, opportunity creation, and opportunity optimization in overseas markets. (2) Governments, foreign institutions and industry associations in the institutional network and competitors, partners, and customers in the commercial networks are the important entities in the construction of overseas market opportunities. Through the interaction of entity perception, relationship construction, and utilization, enterprises can obtain the necessary information, resources, and political asylum in the process of opportunity construction. (3) Organizations, project teams, and organizational sub-units within the enterprise are important internal entities for the construction of overseas market opportunities. Through the connection between different entities, they can achieve the circulation of resources within the organization and promote the opportunity construction of overseas markets. The research conclusions expand the relevant research on international opportunities and have inspiring and guiding significance for the expansion of EMNEs overseas markets.Keywords: international (overseas) opportunities, opportunity construction, network entities, interaction, resource circulation
Procedia PDF Downloads 155215 Space Debris Mitigation: Solutions from the Dark Skies of the Remote Australian Outback Using a Proposed Network of Mobile Astronomical Observatories
Authors: Muhammad Akbar Hussain, Muhammad Mehdi Hussain, Waqar Haider
Abstract:
There are tens of thousands of undetected and uncatalogued pieces of space debris in the Low Earth Orbit (LEO). They are not only difficult to be detected and tracked, their sheer number puts active satellites and humans in orbit around Earth into danger. With the entry of more governments and private companies into harnessing the Earth’s orbit for communication, research and military purposes, there is an ever-increasing need for not only the detection and cataloguing of these pieces of space debris, it is time to take measures to take them out and clean up the space around Earth. Current optical and radar-based Space Situational Awareness initiatives are useful mostly in detecting and cataloguing larger pieces of debris mainly for avoidance measures. Smaller than 10 cm pieces are in a relatively dark zone, yet these are deadly and capable of destroying satellites and human missions. A network of mobile observatories, connected to each other in real time and working in unison as a single instrument, may be able to detect small pieces of debris and achieve effective triangulation to help create a comprehensive database of their trajectories and parameters to the highest level of precision. This data may enable ground-based laser systems to help deorbit individual debris. Such a network of observatories can join current efforts in detection and removal of space debris in Earth’s orbit.Keywords: space debris, low earth orbit, mobile observatories, triangulation, seamless operability
Procedia PDF Downloads 1645214 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1325213 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis
Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif
Abstract:
Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling
Procedia PDF Downloads 1505212 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists
Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat
Abstract:
This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing
Procedia PDF Downloads 1235211 The Rise of Darknet: A Call for Understanding Online Communication of Terrorist Groups in Indonesia
Authors: Aulia Dwi Nastiti
Abstract:
A number of studies and reports on terrorism have continuously addressed the role of internet and online activism to support terrorist and extremist groups. In particular, they stress on social media’s usage that generally serves for the terrorist’s propaganda as well as justification of their causes. While those analyses are important to understand how social media is a vital tool for global network terrorism, they are inadequate to explain the online communication patterns that enable terrorism acts. Beyond apparent online narratives, there is a deep cyber sphere where the very vein of terrorism movement lies. That is a hidden space in the internet called ‘darknet’. Recent investigations, particularly in Middle Eastern context, have shed some lights that this invisible space in the internet is fundamental to maintain the terrorist activities. Despite that, limited number of research examines darknet within the issue of terrorist movements in Indonesian context—where the country is considered quite a hotbed for extremist groups. Therefore, this paper attempts to provide an insight of darknet operation in Indonesian cases. By exploring how the darknet is used by the Indonesian-based extremist groups, this paper maps out communication patterns of terrorist groups on the internet which appear as an intermingled network. It shows the usage of internet is differentiated in different level of anonymity for distinctive purposes. This paper further argues that the emerging terrorist communication network calls for a more comprehensive counterterrorism strategy on the Internet.Keywords: communication pattern, counterterrorism, darknet, extremist groups, terrorism
Procedia PDF Downloads 2925210 Lessons from Implementation of a Network-Wide Safety Huddle in Behavioral Health
Authors: Deborah Weidner, Melissa Morgera
Abstract:
The model of care delivery in the Behavioral Health Network (BHN) is integrated across all five regions of Hartford Healthcare and thus spans the entirety of the state of Connecticut, with care provided in seven inpatient settings and over 30 ambulatory outpatient locations. While safety has been a core priority of the BHN in alignment with High Reliability practices, safety initiatives have historically been facilitated locally in each region or within each entity, with interventions implemented locally as opposed to throughout the network. To address this, the BHN introduced a network wide Safety Huddle during 2022. Launched in January, the BHN Safety Huddle brought together internal stakeholders, including medical and administrative leaders, along with executive institute leadership, quality, and risk management. By bringing leaders together and introducing a network-wide safety huddle into the way we work, the benefit has been an increase in awareness of safety events occurring in behavioral health areas as well as increased systemization of countermeasures to prevent future events. One significant discussion topic presented in huddles has pertained to environmental design and patient access to potentially dangerous items, addressing some of the most relevant factors resulting in harm to patients in inpatient and emergency settings for behavioral health patients. The safety huddle has improved visibility of potential environmental safety risks through the generation of over 15 safety alerts cascaded throughout the BHN and also spurred a rapid improvement project focused on standardization of patient belonging searches to reduce patient access to potentially dangerous items on inpatient units. Safety events pertaining to potentially dangerous items decreased by 31% as a result of standardized interventions implemented across the network and as a result of increased awareness. A second positive outcome originating from the BHN Safety Huddle was implementation of a recommendation to increase the emergency Narcan®(naloxone) supply on hand in ambulatory settings of the BHN after incidents involving accidental overdose resulted in higher doses of naloxone administration. By increasing the emergency supply of naloxone on hand in all ambulatory and residential settings, colleagues are better prepared to respond in an emergency situation should a patient experience an overdose while on site. Lastly, discussions in safety huddle spurred a new initiative within the BHN to improve responsiveness to assaultive incidents through a consultation service. This consult service, aligned with one of the network’s improvement priorities to reduce harm events related to assaultive incidents, was borne out of discussion in huddle in which it was identified that additional interventions may be needed in providing clinical care to patients who are experiencing multiple and/ or frequent safety events.Keywords: quality, safety, behavioral health, risk management
Procedia PDF Downloads 825209 Secure Proxy Signature Based on Factoring and Discrete Logarithm
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.Keywords: discrete logarithm, factoring, proxy signature, key agreement
Procedia PDF Downloads 3075208 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5135207 Language Services as a Means of Language Repository for Tuition Support and Facilitation of Learning in Institution of Higher Learning
Authors: Mzamani Aaron Mabasa
Abstract:
The research study examines the reality that the Language Services Directorate can be considered a language repository hub. The study postulates that multilingual education guided by language policy implementation can improve student performance and pass rate. Various documents in the form of style guides, glossaries and tutorial letters may be used to enable students to understand complex words, sentences, phrases and paragraphs when technical vocabularies are used. This paper addresses the way in which quality assurance can transform South African official languages, including Sign Language, as mandated by the Language Policy for Higher Education. The paper further emphasizes that Language Services is unique in the sense that it involves all South African officials as tools for student support and facilitation of learning. This is in line with the Constitution of the Republic of South Africa (1996) and the Unisa Language Policy of 2023, which declares the status, parity and esteem of these official languages regarding usage in formal function domains, namely education, economy, social and politics. The aim of this paper is to ensure that quality assurance is ultimately accomplished in terms of teaching and learning standards. Eventually, all South African languages can be used for official domains to achieve functional multilingualism. This paper furthermore points out that content analysis as a research instrument as far as a qualitative approach is concerned may be used as a data collection technique.Keywords: repository, multilingualism, policy, education
Procedia PDF Downloads 295206 ATC in Competitive Electricity Market Using TCSC
Authors: S. K. Gupta, Richa Bansal
Abstract:
In a deregulated power system structure, power producers, and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their Available Transfer Capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.Keywords: available transfer capability, FACTS devices, power transfer distribution factors, electric
Procedia PDF Downloads 4955205 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1225204 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder
Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa
Abstract:
Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami
Procedia PDF Downloads 4895203 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 385202 An Approach to Analyze Testing of Nano On-Chip Networks
Authors: Farnaz Fotovvatikhah, Javad Akbari
Abstract:
Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.Keywords: test, nano on-chip network, JTAG, modelling
Procedia PDF Downloads 4865201 Awareness and Utilization of Social Network Tools among Agricultural Science Students in Colleges of Education in Ogun State, Nigeria
Authors: Adebowale Olukayode Efunnowo
Abstract:
This study was carried out to assess the awareness and utilization of Social Network Tools (SNTs) among agricultural science students in Colleges of Education in Ogun State, Nigeria. Simple random sampling techniques were used to select 280 respondents from the study area. Descriptive statistics was used to describe the objectives while Pearson Product Moment Correlation was used to test the hypothesis. The result showed that the majority (71.8%) of the respondents were single, with a mean age of 20 years. Almost all (95.7%) the respondents were aware of Facebook and 2go as a Social Network Tools (SNTs) while 85.0% of the respondents were not aware of Blackplanet, LinkedIn, MyHeritage and Bebo. Many (41.1%) of the respondents had views that using SNTs can enhance extensive literature survey, increase internet browsing potential, promote teaching proficiency, and update on outcomes of researches. However, 51.4% of the respondents perceived that SNTs usage as what is meant for the lecturers/adults only while 16.1% considered it as mainly used by internet fraudsters. Findings revealed that about 50.0% of the respondents browsed Facebook and 2go daily while more than 80% of the respondents used Blackplanet, MyHeritage, Skyrock, Bebo, LinkedIn and My YearBook as the need arise. Major constraints to the awareness and utilization of SNTs were high cost and poor quality of ICTs facilities (77.1%), epileptic power supply (75.0%), inadequate telecommunication infrastructure (71.1%), low technical know-how (62.9%) and inadequate computer knowledge (61.1%). The result of PPMC analysis showed that there was an inverse relationship between constraints and utilization of SNTs at p < 0.05. It can be concluded that constraints affect efficient and effective utilization of SNTs in the study area. It is hereby recommended that management of colleges of education and agricultural institutes should provide good internet connectivity, computer facilities, and alternative power supply in order to increase the awareness and utilization of SNTs among students.Keywords: awareness, utilization, social network tools, constraints, students
Procedia PDF Downloads 3505200 Expanding Access and Deepening Engagement: Building an Open Source Digital Platform for Restoration-Based Stem Education in the Largest Public-School System in the United States
Authors: Lauren B. Birney
Abstract:
This project focuses upon the expansion of the existing "Curriculum and Community Enterprise for the Restoration of New York Harbor in New York City Public Schools" NSF EHR DRL 1440869, NSF EHR DRL 1839656 and NSF EHR DRL 1759006. This project is recognized locally as “Curriculum and Community Enterprise for Restoration Science,” or CCERS. CCERS is a comprehensive model of ecological restoration-based STEM education for urban public-school students. Following an accelerated rollout, CCERS is now being implemented in 120+ Title 1 funded NYC Department of Education middle schools, led by two cohorts of 250 teachers, serving more than 11,000 students in total. Initial results and baseline data suggest that the CCERS model, with the Billion Oyster Project (BOP) as its local restoration ecology-based STEM curriculum, is having profound impacts on students, teachers, school leaders, and the broader community of CCERS participants and stakeholders. Students and teachers report being receptive to the CCERS model and deeply engaged in the initial phase of curriculum development, citizen science data collection, and student-centered, problem-based STEM learning. The BOP CCERS Digital Platform will serve as the central technology hub for all research, data, data analysis, resources, materials and student data to promote global interactions between communities, Research conducted included qualitative and quantitative data analysis. We continue to work internally on making edits and changes to accommodate a dynamic society. The STEM Collaboratory NYC® at Pace University New York City continues to act as the prime institution for the BOP CCERS project since the project’s inception in 2014. The project continues to strive to provide opportunities in STEM for underrepresented and underserved populations in New York City. The replicable model serves as an opportunity for other entities to create this type of collaboration within their own communities and ignite a community to come together and address the notable issue. Providing opportunities for young students to engage in community initiatives allows for a more cohesive set of stakeholders, ability for young people to network and provide additional resources for those students in need of additional support, resources and structure. The project has planted more than 47 million oysters across 12 acres and 15 reef sites, with the help of more than 8,000 students and 10,000 volunteers. Additional enhancements and features on the BOP CCERS Digital Platform will continue over the next three years through funding provided by the National Science Foundation, NSF DRL EHR 1759006/1839656 Principal Investigator Dr. Lauren Birney, Professor Pace University. Early results from the data indicate that the new version of the Platform is creating traction both nationally and internationally among community stakeholders and constituents. This project continues to focus on new collaborative partners that will support underrepresented students in STEM Education. The advanced Digital Platform will allow for us connect with other countries and networks on a larger Global scale.Keywords: STEM education, environmental restoration science, technology, citizen science
Procedia PDF Downloads 865199 Participants’ Perception and a Student Protest of Peking University in 2014
Authors: Ruanzhenghao Shi
Abstract:
Student movements have persisted in mainland China, especially in elite universities since the Tiananmen Prodemocracy Movement, contrary to the lack of studies on them. However, the participants' repertoire, mobilization and mode of interaction with authorities are vastly different from their predecessors in the 1980s as well as their western counterparts. In most of the cases, agents, cognizant of the high cost of action and their vulnerability to the authorities, consciously curtailed certain repertoire and themes of resistance. Thus these movements, without appreciable organized force, were self-interested, fragmentally mobilized, lowly integrated and limited within the campus. This study documents the 2014 protest against Yanching Academy program at Peking University, a top-tier Chinese university that played the leading role in the 1989 protest. The 2014 case is different from abovementioned trend of submissive resistance in the last twenty years, insofar as it is a value-oriented and emotion-driven collective action with the resurgence of some repertoire. The participants perceived the university's contemporary ineffectiveness and clumsiness in control and administration, higher Party authorities' indifference to less-political themes, and an increasing number of potential advocates, including students, intellectuals and social media. It shows that resisters' perception of their relative strength to their opponents - in this case, the university and its system for controlling students - under specific circumstances, not merely political opportunities or institutional changes, stimulates the participants and thus contributes to the mobilization and organization of a collective action, even under severe social control.Keywords: collective action, China, university students, resistance
Procedia PDF Downloads 1515198 Social Networks Global Impact on Protest Movements and Human Rights Activism
Authors: Marcya Burden, Savonna Greer
Abstract:
In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.Keywords: activism, protests, human rights, networks
Procedia PDF Downloads 955197 Motivation, Legal Knowledge and Preference Investigation of Hungarian Law Students
Authors: Zsofia Patyi
Abstract:
While empirical studies under socialism in Hungary focused on the lawyer society as a whole, current research deals with law students in specific. The change of regime and the mutation of legal education have influenced the motivation, efficiency, social background and self-concept of law students. This shift needs to be acknowledged, and the education system improved for students and together with students. A new law student society requires a different legal education system, different legal studies, or, at the minimum, a different approach to teaching law. This is to ensure that competitive lawyers be trained who understand the constantly changing nature of the law and, as a result, can potentially transform or create legislation themselves. A number of developments can affect law students’ awareness of legal relations in a democratic state. In today’s Hungary, these decisive factors are primarily the new regulation of the financing of law students, and secondly, the new Hungarian constitution (henceforth: Alaptörvény), which has modified the base of the Hungarian legal system. These circumstances necessitate a new, comprehensive, and empirical, investigation of law students. To this end, our research team (comprising a professor, a Ph.D. student, and two law students), is conducting a new type of study in February 2017. The first stage of the research project uses the desktop method to open up the research antecedents. Afterward, a structured questionnaire draft will be designed and sent to the Head of Department of Sociology and the Associate Professor of the Department of Constitutional Law at the University of Szeged to have the draft checked and amended. Next, an open workshop for students and teachers will be organized with the aim to discuss the draft and create the final questionnaire. The research team will then contact each Hungarian university with a Faculty of Law to reach all 1st- and 4th-year law students. 1st-year students have not yet studied the Alaptörvény, while 4th-year students have. All students will be asked to fill in the questionnaire (in February). Results are expected to be in at the end of February. In March, the research team will report the results and present the conclusions. In addition, the results will be compared to previous researches. The outcome will help us answer the following research question: How should legal studies and legal education in Hungary be reformed in accordance with law students and the future lawyer society? The aim of the research is to (1) help create a new student- and career-centered teaching method of legal studies, (2) offer a new perspective on legal education, and (3) create a helpful and useful de lege ferenda proposal for the attorney general as regards legal education as part of higher education.Keywords: change, constitution, investigation, law students, lawyer society, legal education, legal studies, motivation, reform
Procedia PDF Downloads 2655196 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1875195 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3715194 UniFi: Universal Filter Model for Image Enhancement
Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh
Abstract:
Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.Keywords: universal filter, image enhancement, neural networks, computer vision
Procedia PDF Downloads 1015193 Bi-objective Network Optimization in Disaster Relief Logistics
Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann
Abstract:
Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks
Procedia PDF Downloads 795192 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.Keywords: differentiated instruction, universal design for learning, special education, diversity
Procedia PDF Downloads 2195191 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes
Authors: Mahsa Oroojeni Mohammad Javad
Abstract:
Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes
Procedia PDF Downloads 765190 Engage, Connect, Empower: Agile Approach in the University Students' Education
Authors: D. Bjelica, T. Slavinski, V. Vukimrovic, D. Pavlovic, D. Bodroza, V. Dabetic
Abstract:
Traditional methods and techniques used in higher education may be significantly persuasive on the university students' perception about quality of the teaching process. Students’ satisfaction with the university experience may be affected by chosen educational approaches. Contemporary project management trends recognize agile approaches' beneficial, so modern practice highlights their usage, especially in the IT industry. A key research question concerns the possibility of applying agile methods in youth education. As agile methodology pinpoint iteratively-incremental delivery of results, its employment could be remarkably fruitful in education. This paper demonstrates the agile concept's application in the university students’ education through the continuous delivery of student solutions. Therefore, based on the fundamental values and principles of the agile manifest, paper will analyze students' performance and learned lessons in their encounter with the agile environment. The research is based on qualitative and quantitative analysis that includes sprints, as preparation and realization of student tasks in shorter iterations. Consequently, the performance of student teams will be monitored through iterations, as well as the process of adaptive planning and realization. Grounded theory methodology has been used in this research, as so as descriptive statistics and Man Whitney and Kruskal Wallis test for group comparison. Developed constructs of the model will be showcase through qualitative research, then validated through a pilot survey, and eventually tested as a concept in the final survey. The paper highlights the variability of educational curricula based on university students' feedbacks, which will be collected at the end of every sprint and indicates to university students' satisfaction inconsistency according to approaches applied in education. Values delivered by the lecturers will also be continuously monitored; thus, it will be prioritizing in order to students' requests. Minimal viable product, as the early delivery of results, will be particularly emphasized in the implementation process. The paper offers both theoretical and practical implications. This research contains exceptional lessons that may be applicable by educational institutions in curriculum creation processes, or by lecturers in curriculum design and teaching. On the other hand, they can be beneficial regarding university students' satisfaction increscent in respect of teaching styles, gained knowledge, or even educational content.Keywords: academic performances, agile, high education, university students' satisfaction
Procedia PDF Downloads 1285189 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 953