Search results for: spatial rainfall prediction
3134 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1373133 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3463132 On Space Narrative and American Dream in Martin Eden
Authors: Yangyang Zhang
Abstract:
Martin Eden tells about the tragedy of the protagonist Martin Eden’s suicide after his disillusion about American dream. The author Jack London presents various spatial routines of Martin Eden and reveals the involvement of space in realizing American dream: on the one hand, the Berkeley and Oakland cities contribute to Martin’s material success, making his American dream practical, and on the other hand, the two cities involve in the oppression of bourgeoisie ideology to Martin, promoting the domestic imperialization of bourgeoisie ideology represented by American dream. Molded by bourgeoisie ideology in the city, Martin constructed the oriental South Sea, revealing the oversea imperialization of bourgeoisie ideology behind American dream. By exploring the social, historical and political aspects of space, Martin Eden tries to demonstrate the mere material success and imperialism represented by American dream, revealing the fact of the involvement of American dreamin ideological oppression. When Jack London wrote Martin Eden, he had become a famous writer and realized his personal "American dream". He integrated his struggle experience into the protagonist Martin Eden, and also put his critique of the nature of "American dream" in the novel. The concept of the "American Dream" made the United States the land of dreams, and it also made many Americans believe that through personal struggle, they could climb the social ladder. Under the context of rapid growth in economy in the late 19 th century, American dream was reduced to the satisfaction on a material level. When material wealth was fulfilled, many people felt shattered for a variety of reasons, and such a phenomenon was reflected in the literature of disillusionment in 19th-century America.Martin Eden is such a work about disillusion, in which the geographical space becomes the witness of the realization and disillusionment of the protagonist Martin's "American dream". By analyzing the spatial narrative in Martin Eden, this paper reveals that the "American dream" only represents material success for individuals and the imperialization of capitalist ideology, and exposes the ideological nature of the "American Dream".Keywords: Martin Eden, space, American dream, ideology of imperialism
Procedia PDF Downloads 1503131 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.Keywords: traditional coal mining, heavy metals, pollution indicators, geostatistics, Caspian forest
Procedia PDF Downloads 1793130 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins
Authors: Ahmad Shayeq Azizi, Yuji Toda
Abstract:
In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins
Procedia PDF Downloads 1663129 Drought Alters the Expression of a Candidate Zea Mays P-Coumarate 3-Hydroxylase Gene and Caffeic Acid Biosynthesis
Authors: Zintle Kolo, Ndiko Ludidi
Abstract:
The enzymatic activity of p-coumarate 3-hydroxylase (C3H) synthesize caffeic acid from p-coumaric acid. We recently showed that exogenously applied caffeic acid confers salinity tolerance in soybean (Glycine max) by inducing antioxidant enzymatic activity to promote enhanced scavenging or reactive oxygen species, thus limiting salinity-induced oxidative stress. Recent evidence also establishes that pre-treatment of plants with exogenously supplied caffeic acid improves plant tolerance to osmotic stress by improving plant antioxidant capacity and enhancing biosynthesis of compatible solutes. We aimed to identify a C3H in maize (Zea mays) and evaluate the effect of drought on the spatial and temporal expression of the gene encoding the candidate maize C3H (ZmC3H). Primary sequence analysis shows that ZmC3H shares 71% identity with an Arabidopsis thaliana C3H that is implicated in the control of Arabidopsis cell expansion, growth, and responses to stress. In silico ZmC3H promoter analysis reveals the presence of cis-acting elements that interact with transcription factors implicated in plant responses to drought. Spatial expression analysis by semi-quantitative RT-PCR shows that ZmC3H is expressed in both leaves and roots under normal conditions. However, drought represses the expression of ZmC3H in leaves whereas it up-regulates its expression in roots. These changes in ZmC3H expression correlate with the changes in the content of caffeic acid in maize in response to drought. We illustrate the implications of these changes in the expression of the gene in relation to maize responses to drought and discuss the potential of regulating caffeic acid biosynthesis towards genetic improvement of maize tolerance to drought stress. These findings have implications for food security because of the potential of the implications of the study for drought tolerance in maize.Keywords: caffeic acid, drought-responsive expression, maize drought tolerance, p-coumarate 3-hydroxylase
Procedia PDF Downloads 4733128 Assessment of Cafe Design Criteria in a Consumerist Society: An Approach on Place Attachment
Authors: Azadeh Razzagh Shoar, Hassan Sadeghi Naeini
Abstract:
There is little doubt that concepts such as space and place have become more common considering that human beings have grown more apart and more than having contact with each other, they are in contact with objects, spaces, and places. Cafés, as a third place which is neither home nor workplace, have attracted these authors’ interests, who are industrial and interior designers. There has been much research on providing suitable cafés, customer behavior, and criteria for spatial sense. However, little research has been carried out on consumerism, desire for variety, and their relationship with changing places, and specifically cafes in term of interior design. In fact, customer’s sense of place has mostly been overlooked. In this case study, authors conducted to challenge the desire for variety and consumerism as well as investigating the addictive factors in cafés. From the designers’ point of view and by collecting data through observing and interviewing café managers, this study investigates and analyzes the customers in two cafes located in a commercial building in northern Tehran (a part of city with above average economic conditions). Since these two cafés are at the same level in terms of interior and spatial design, the question is raised as to why customers patronize the newly built café despite their loyalty to the older café. This study aims to investigate and find the criteria based on the sense of space (café) in a consumerist society, a world where consumption is a myth. Going to cafés in a larger scale than a product can show a selection and finally who you are, where you go, which brand of coffee you prefer, and what time of the day you would like to have your coffee. The results show that since people spend time in cafés more than any other third place, the interaction they have with their environment is more than anything else, and they are consumers of time and place more than coffee or any other product. Also, if there is a sense of consumerism and variety, it is mostly for the place rather than coffee and other products. To satisfy this sense, individuals go to a new place (the new café). It can be easily observed that this sense overshadows the sense of efficiency, design, facilities and all important factor for a café.Keywords: place, cafe, consumerist society, consumerism, desire for variety
Procedia PDF Downloads 1643127 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 553126 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach
Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar
Abstract:
Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map
Procedia PDF Downloads 5213125 Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India
Authors: M. Elanchezhian, C. Gunasekaran, A. Agnes Deepa, M. Salahudeen
Abstract:
In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands.Keywords: biodiversity, climate change, mukuruthi national park, terrestrial invertebrates
Procedia PDF Downloads 5163124 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece
Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis
Abstract:
Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).Keywords: dairy cows, seropositivity, spatial analysis, temperature factors
Procedia PDF Downloads 1993123 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1423122 The Effect of Manure Loaded Biochar on Soil Microbial Communities
Authors: T. Weber, D. MacKenzie
Abstract:
The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.Keywords: cattle, biochar, manure, microbial activity
Procedia PDF Downloads 1033121 Investigation of the Cognition Factors of Fire Response Performances Based on Survey
Authors: Jingjing Yan, Gengen He, Anahid Basiri
Abstract:
The design of an indoor navigation system for fire evacuation support requires not only physical feasibility but also a relatively thorough consideration of the human factors. This study has taken a survey to investigate the fire response performances (FRP) of the indoor occupants in age of 20s, virtually in an environment for their routine life, focusing on the aspects of indoor familiarity (spatial cognition), psychological stress and decision makings. For indoor familiarity, it is interested in three factors, i.e., the familiarity to exits and risky places as well as the satisfaction degree of the current indoor sign installation. According to the results, males have a higher average familiarity with the indoor exits while both genders have a relatively low level of risky place awareness. These two factors are positively correlated with the satisfaction degree of the current installation of the indoor signs, and this correlation is more evident for the exit familiarity. The integration of the height factor with the other two indoor familiarity factors can improve the degree of indoor sign satisfaction. For psychological stress, this study concentrates on the situated cognition of moving difficulty, nervousness, and speed reduction when using a bending posture during the fire evacuation to avoid smoke inhalation. The results have shown that both genders have a similar mid-level of hardness sensation. The females have a higher average level of nervousness, while males have a higher average level of speed reduction sensation. This study has assumed that the growing indoor spatial cognition can help ease the psychological hardness and nervousness. However, it only seems to be true after reaching a certain level. When integrating the effects from indoor familiarity and the other two psychological factors, the correlation to the sensation of speed change can be strengthened, based on a stronger positive correlation with the integrated factors. This study has also investigated the participants’ attitude to the navigation support during evacuation, and the majority of the participants have shown positive attitudes. For following the guidance under some extreme cases, i.e., changing to a longer path and to an alternative exit, the majority of the participants has shown the confidence of keeping trusting the guidance service. These decisions are affected by the combined influences from indoor familiarity, psychological stress, and attitude of using navigation service. For the decision time of the selected extreme cases, it costs more time in average for deciding to use a longer route than to use an alternative exit, and this situation is more evident for the female participants. This requires further considerations when designing a personalized smartphone-based navigation app. This study has also investigated the calming factors for people being trapped during evacuation. The top consideration is the distance to the nearest firefighters, and the following considerations are the current fire conditions in the surrounding environment and the locations of all firefighters. The ranking of the latter two considerations is very gender-dependent according to the results.Keywords: fire response performances, indoor spatial cognition, situated cognition, survey analysis
Procedia PDF Downloads 1433120 An Assessment of Health Hazards in Urban Communities: A Study of Spatial-Temporal Variations of Dengue Epidemic in Colombo, Sri Lanka
Authors: U. Thisara G. Perera, C. M. Kanchana N. K. Chandrasekara
Abstract:
Dengue is an epidemic which is spread by Aedes Egyptai and Aedes Albopictus mosquitoes. The cases of dengue show a dramatic growth rate of the epidemic in urban and semi urban areas spatially in tropical and sub-tropical regions of the world. Incidence of dengue has become a prominent reason for hospitalization and deaths in Asian countries, including Sri Lanka. During the last decade the dengue epidemic began to spread from urban to semi-urban and then to rural settings of the country. The highest number of dengue infected patients was recorded in Sri Lanka in the year 2016 and the highest number of patients was identified in Colombo district. Together with the commercial, industrial, and other supporting services, the district suffers from rapid urbanization and high population density. Thus, drainage and waste disposal patterns of the people in this area exert an additional pressure to the environment. The district is situated in the wet zone and thus low lying lands constitute the largest portion of the district. This situation additionally facilitates mosquito breeding sites. Therefore, the purpose of the present study was to assess the spatial and temporal distribution patterns of dengue epidemic in Kolonnawa MOH area (Medical Officer of Health) in the district of Colombo. The study was carried out using 615 recorded dengue cases in Kollonnawa MOH area during the south east monsoon season from May to September 2016. The Moran’s I and Kernel density estimation were used as analytical methods. The analysis of data was accomplished through the integrated use of ArcGIS 10.1 software packages along with Microsoft Excel analytical tool. Field observation was also carried out for verification purposes during the study period. Results of the Moran’s I index indicates that the spatial distribution of dengue cases showed a cluster distribution pattern across the area. Kernel density estimation emphasis that dengue cases are high where the population has gathered, especially in areas comprising housing schemes. Results of the Kernel Density estimation further discloses that hot spots of dengue epidemic are located in the western half of the Kolonnawa MOH area, which is close to the Colombo municipal boundary and there is a significant relationship with high population density and unplanned urban land use practices. Results of the field observation confirm that the drainage systems in these areas function poorly and careless waste disposal methods of the people further encourage mosquito breeding sites. This situation has evolved harmfully from a public health issue to a social problem, which ultimately impacts on the economy and social lives of the country.Keywords: Dengue epidemic, health hazards, Kernel density, Moran’s I, Sri Lanka
Procedia PDF Downloads 3003119 Impact of Climate Change on Water Resources in Morocco
Authors: Abdelghani Qadem, Zouhair Qadem
Abstract:
Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.Keywords: morocco, climate change, water resources, impact, water scarcity
Procedia PDF Downloads 863118 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 953117 Soil Loss Assessment at Steep Slope: A Case Study at the Guthrie Corridor Expressway, Selangor, Malaysia
Authors: Rabiul Islam
Abstract:
The study was in order to assess soil erosion at plot scale Universal Soil Loss Equation (USLE) erosion model and Geographic Information System (GIS) technique have been used for the study 8 plots in Guthrie Corridor Expressway, Selangor, Malaysia. The USLE model estimates an average soil loss soil integrating several factors such as rainfall erosivity factor(R ), Soil erodibility factor (K), slope length and steepness factor (LS), vegetation cover factor as well as conservation practice factor (C &P) and Results shows that the four plots have very low rates of soil loss, i.e. NLDNM, NDNM, PLDM, and NDM having an average soil loss of 0.059, 0.106, 0.386 and 0.372 ton/ha/ year, respectively. The NBNM, PLDNM and NLDM plots had a relatively higher rate of soil loss, with an average of 0.678, 0.757 and 0.493ton/ha/year. Whereas, the NBM is one of the highest rate of soil loss from 0.842 ton/ha/year to maximum 16.466 ton/ha/year. The NBM plot was located at bare the land; hence the magnitude of C factor(C=0.15) was the highest one.Keywords: USLE model, GIS, Guthrie Corridor Expressway (GCE), Malaysia
Procedia PDF Downloads 5293116 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 723115 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 843114 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 2413113 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section
Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert
Abstract:
Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics
Procedia PDF Downloads 2583112 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries
Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand
Abstract:
Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.
Procedia PDF Downloads 763111 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses
Authors: Awais Ahmed, Javed Iqbal
Abstract:
Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system
Procedia PDF Downloads 3763110 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model
Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf
Abstract:
Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV
Procedia PDF Downloads 1273109 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India
Authors: Rajashree Naik, Laxmi Kant Sharma
Abstract:
Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping
Procedia PDF Downloads 1353108 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials
Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova
Abstract:
Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system
Procedia PDF Downloads 4063107 Brain-Computer Interfaces That Use Electroencephalography
Authors: Arda Ozkurt, Ozlem Bozkurt
Abstract:
Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.Keywords: BCI, EEG, non-invasive, spatial resolution
Procedia PDF Downloads 713106 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5833105 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 136