Search results for: sectorial information
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10779

Search results for: sectorial information

8829 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 408
8828 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 467
8827 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 53
8826 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories

Authors: Heba M. Wagih, Hoda M. O. Mokhtar

Abstract:

Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.

Keywords: human behavior trajectory, location-based social network, ontology, social network

Procedia PDF Downloads 452
8825 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 667
8824 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street

Authors: Victor Pesco Kassa

Abstract:

This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.

Keywords: DAWASA, NRW, Esri, EURA, ArcGIS

Procedia PDF Downloads 83
8823 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 90
8822 Ambient Notifications and the Interruption Effect

Authors: Trapond Hiransalee

Abstract:

The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.

Keywords: HCI, interaction, interaction design, usability testing

Procedia PDF Downloads 405
8821 Reading Knowledge Development and Its Phases with Generation Z

Authors: Onur Özdemir, M.Erhan ORHAN

Abstract:

Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.

Keywords: knowledge development, knowledge management, generation Z, intelligence cycle

Procedia PDF Downloads 517
8820 Management Competency in Logistical Function: The Skills That Will Master a Logistical Manager

Authors: Fatima Ibnchahid

Abstract:

Competence approach is considered, since the early 80's as one of the major development of HR policies. Many approaches to manage the professional skills were declined. Some processes are mature whereas the others have been abandoned. Competence can be defined as the set of knowledge (theoretical and practical), know-how (experience) and life skills (personality traits) mobilized by a person in the company. The skills must master a logistics manager are divided into two main categories: depending on whether technical skills, or managerial skills and human. The firsts are broken down into skills on logistical techniques and on general skills in business, seconds in social skills (self with others) and personal (with oneself). Logisticians are faced with new challenges and new constraints that are revolutionizing the way to treat the physical movement of goods and operations related to information flows that trigger, they control and guide the physical movements of these major changes, we can mention the development of information technology and communication, the emergence of strong environmental and security constraints. These changes have important effects on the skills needs of the members of the logistical function and sensitive development for training requested by logistical managers to perform better in their job changes. In this article, we will address two main points, first, a brief overview of the management skills and secondly answer the question asked in the title of the article to know what are the skills that will master a logistical manager.

Keywords: skills, competence, management, logistical function

Procedia PDF Downloads 281
8819 Social Media Mining with R. Twitter Analyses

Authors: Diana Codat

Abstract:

Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance.

Keywords: data mining, language R, social networks, Twitter

Procedia PDF Downloads 184
8818 The Effects of Self-Efficacy on Life Satisfaction

Authors: Gao ya

Abstract:

This present study aims to find the relationship between self-efficacy and life satisfaction and the effects of self-efficacy on life satisfaction among Chinese people whose age is from 27-32, born between 1990 and 1995. People who were born between 1990 and 1995 are worthy to receive more attention now because the 90s was always received a lot of focus and labeled negatively as soon as they were born. And a large number of researches study people in individualism society more. So we chose the specific population whose age is from 27 to 32 live in a collectivist society. Demographic information was collected, including age, gender, education level, marital status, income level, number of children. We used the general self-efficacy scale(GSC) and the satisfaction with Life Scale(SLS) to collect data. A total of 350 questionnaires were distributed in and collected from mainland China, then 261 valid questionnaires were returned in the end, making a response rate of 74.57 percent. Some statistics techniques were used, like regression, correlation, ANOVA, T-test and general linear model, to measure variables. The findings were that self-efficacy positively related to life satisfaction. And self-efficacy influences life satisfaction significantly. At the same time, the relationship between demographic information and life satisfaction was analyzed.

Keywords: marital status, life satisfaction, number of children, self-efficacy, income level

Procedia PDF Downloads 121
8817 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data

Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian

Abstract:

This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.

Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment

Procedia PDF Downloads 21
8816 The Views of Health Care Professionals outside of the General Practice Setting on the Provision of Oral Contraception in Comparison to Long-Acting Reversible Contraception

Authors: Carri Welsby, Jessie Gunson, Pen Roe

Abstract:

Currently, there is limited research examining health care professionals (HCPs) views on long-acting reversible contraception (LARC) advice and prescription, particularly outside of the general practice (GP) setting. The aim of this study is to systematically review existing evidence around the barriers and enablers of oral contraception (OC) in comparison to LARC, as perceived by HCPs in non-GP settings. Five electronic databases were searched in April 2018 using terms related to LARC, OC, HCPs, and views, but not terms related to GPs. Studies were excluded if they concerned emergency oral contraception, male contraceptives, contraceptive use in conjunction with a health condition(s), developing countries, GPs and GP settings, were non-English or was not published before 2013. A total of six studies were included for systematic reviewing. Five key areas emerged, under which themes were categorised, including (1) understanding HCP attitudes and counselling practices towards contraceptive methods; (2) assessment of HCP attitudes and beliefs about contraceptive methods; (3) misconceptions and concerns towards contraceptive methods; and (4) influences on views, attitudes, and beliefs of contraceptive methods. Limited education and training of HCPs exists around LARC provision, particularly compared to OC. The most common misconception inhibiting HCPs contraceptive information delivery to women was the belief that LARC was inappropriate for nulliparous women. In turn, by not providing the correct information on a variety of contraceptive methods, HCP counselling practices were disempowering for women and restricted them from accessing reproductive justice. Educating HCPs to be able to provide accurate and factual information to women on all contraception is vital to encourage a woman-centered approach during contraceptive counselling and promote informed choices by women.

Keywords: advice, contraceptives, health care professionals, long acting reversible contraception, oral contraception, reproductive justice

Procedia PDF Downloads 160
8815 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 73
8814 Radio Frequency Identification System and Its Effect on Retailing Sector

Authors: Ayşe Çoban, Orhan Çoban, Murat Birekul

Abstract:

In this study, the effects of radio frequency identification system on the retailing sector were theoretically analysed. The technology of Radio Frequency Identification (RFID) is a method enabling to identify the objects individually and automatically, using radio frequency. RFID generally consists of a tag and reader. RFID tags can be programmed to receive, store, and send the information of object such as Electronic Product Code (EPC). Having read the tags placed on product by the reader, the information associated with the management of supply chain can be automatically recorded and replaced. Recently, RFID technology used in many areas has particularly important effects on the businesses that are active in the retailing sector. The most important disadvantage of this technology is that the cost of installation and operation is higher compared to its alternatives. However, it provides important advantages to the business enterprises in the application process. At present, it is especially adopted by the large sized enterprises and with chain stores in the international areas. The application results point out that RFID technology provides business enterprises with the important competitive advantage.

Keywords: RFID, retailing sector, RFID technologies, electronic product code

Procedia PDF Downloads 386
8813 The Knowledge, Attitude, and Practice About Health Information Technology Among First-Generation Muslim Immigrant Women in Atlanta City During the Pandemic

Authors: Awatef Ahmed Ben Ramadan, Aqsa Arshad

Abstract:

Background: There is a huge Muslim migration movement to North America and Europe for several reasons, primarily refuge from war areas and partly to search for better work and educational chances. There are always concerns regarding first-Generation Immigrant women's health and computer literacy, an adequate understanding of the health systems, and the use of the existing healthcare technology and services effectively and efficiently. Language proficiency level, preference for cultural and traditional remedies, socioeconomic factors, fear of stereotyping, limited accessibility to health services, and general unfamiliarity with the existing health services and resources are familiar variables among these women. Aims: The current study aims to assess the health and digital literacy of first-generation Muslim women in Atlanta city. Also, the study aims to examine how the COVID-19 pandemic has encouraged the use of health information technology and increased technology awareness among the targeted women. Methods: The study design is cross-sectional correlational research. The study will be conducted to produce preliminary results that the investigators want to have to supplement an NIH grant application about leveraging information technology to reduce the health inequalities amongst the first-generation immigrant Muslim women in Atlanta City. The investigators will collect the study data in two phases using different tools. Phase one was conducted in June 2022; the investigators used tools to measure health and digital literacy amongst 42 first-generation immigrant Muslim women. Phase two was conducted in November 2022; the investigators measured the Knowledge, Attitude, and Practice (KAP) of using health information technology such as telehealth from a sample of 45 first-generation Muslim immigrant women in Atlanta; in addition, the investigators measured how the current pandemic has affected their KAP to use telemedicine and telehealth services. Both phases' study participants were recruited using convenience sampling methodology. The investigators collected around 40 of 18 years old or older first-generation Muslim immigrant women for both study phases. The study excluded Immigrants who hold work visas and second-generation immigrants. Results: At the point of submitting this abstract, the investigators are still analyzing the study data to produce preliminary results to apply for an NIH grant entitled "Leveraging Health Information Technology (Health IT) to Address and Reduce Health Care Disparities (R01 Clinical Trial Optional)". This research will be the first step of a comprehensive research project to assess and measure health and digital literacy amongst a vulnerable community group. The targeted group might have different points of view from the U.S.-born inhabitants on how to: promote their health, gain healthy lifestyles and habits, screen for diseases, adhere to health treatment and follow-up plans, perceive the importance of using available and affordable technology to communicate with their providers and improve their health, and help in making serious decisions for their health. The investigators aim to develop an educational and instructional health mobile application considering the language and cultural factors that affect immigrants' ability to access different health and social support sources, know their health rights and obligations in their communities, and improve their health behavior and behavior lifestyles.

Keywords: first-generation immigrant Muslim women, telehealth, COVID-19 pandemic, health information technology, health and digital literacy

Procedia PDF Downloads 86
8812 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 552
8811 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)

Authors: Lokesh Harshe

Abstract:

The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.

Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED

Procedia PDF Downloads 54
8810 Human Action Recognition Using Wavelets of Derived Beta Distributions

Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel

Abstract:

In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.

Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet

Procedia PDF Downloads 411
8809 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 280
8808 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 149
8807 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi

Abstract:

The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling

Procedia PDF Downloads 368
8806 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 177
8805 Extent of I.C.T Application in Record Management and Factors Hindering the Utilization of E-Learning in the Government Owned Universities in Enugu State, Nigeria

Authors: Roseline Unoma Chidobi

Abstract:

The purpose of this study is to identify the extent of Information Communication Technology (ICT) application in record management and some factors militating against the utilization of e-learning in the universities in Enugu state. The study was a survey research the quantitative data were collected through a 30 – item questionnaire title extent of ICT Application in Record management and militating Factors in the utilization of e-learning (EIARMMFUE). This was administered on a population of 603 respondents made up of university academic staff and senior administrative staff. The data were analyzed using mean, standard deviation and t-test statistics on a modified 4 point rating scale. Findings of the study revealed among others that ICT are not adequately applied in the management of records in the Universities in Nigeria. Factors like wrong notion or superstitious believe hinder the effective utilization of e – learning approach. The study recommended that the use of ICT in record management should be enhanced in order to achieve effective school management. All the factors militating against the effective utilization of e-learning approach should be addressed for the maximum realization of teaching and learning.

Keywords: e-learning, information communication, teaching, technology, tertiary institution

Procedia PDF Downloads 525
8804 Users and Non-Users of Social Media: An Exploratory Study of Rural Women in Eastern Uttar Pradesh

Authors: Neha Bhushan

Abstract:

For the purpose of this study a village of district Azamgarh has been selected which is a part of the most populous and backward state of the country, Uttar Pradesh. In the age of information, everyone has the right to acquire information and it becomes important to assess the acceptance and non-acceptance of social media among rural population. Rural women of the state are showing positive trends in the form of increased social media and mobile usage. This study is an effort to know the purpose of rural women for using social media. The study design is exploratory and qualitative in nature. Data collection primarily consisted of 25 semi-structured individual interviews having 10 open-ended specific questions in one of the villages of Azamgarh district of Eastern Uttar Pradesh. Sampling approach is flexible and situational. Data reveals that rural women have become active on social media since last six months to one year. Most of them are using Facebook, Whatsapp, and YouTube for the purpose of interaction, learning new skills, checking out recipes and latest fashion. This pilot study gives a bird eye view of the problem and opens door for exploring this least explored area.

Keywords: exploratory research, mobile usage, rural women, social media

Procedia PDF Downloads 145
8803 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 375
8802 Ergonomics and Its Applicability in the Design Process in Egypt Challenges and Prospects

Authors: Mohamed Moheyeldin Mahmoud

Abstract:

Egypt suffers from a severe shortage of data and charts concerning the physical dimensions, measurements, qualities and consumer behavior. The shortage of needed information and appropriate methods has forced the Egyptian designer to use any other foreign standard when designing a product for the Egyptian consumer which has led to many problems. The urgently needed database concerning the physical specifications, measurements of the Egyptian consumers, as well as the need to support the Ergonomics given courses in many colleges and institutes with the latest technologies, is stated as the research problem. Descriptive analytical method relying on the compiling, comparing and analyzing of information and facts in order to get acceptable perceptions, ideas and considerations is the used methodology by the researcher. The research concludes that: 1. Good interaction relationship between users and products shows the success of that product. 2. An integration linkage between the most prominent fields of science specially Ergonomics, Interaction Design and Ethnography should be encouraged to provide an ultimately updated database concerning the nature, specifications and environment of the Egyptian consumer, in order to achieve a higher benefit for both user and product. 3. Chinese economic policy based on the study of market requirements long before any market activities should be emulated. 4. Using Ethnography supports the design activities creating new products or updating existent ones through measuring the compatibility of products with their environment and user expectations, While contracting a joint cooperation between military colleges, sports education institutes from one side, and design institutes from the other side to provide an ultimately updated (annually updated) database concerning some specifications about students of both sexes applying in those institutes (height, weight, etc.) to provide the Industrial designer with the needed information when creating a new product or updating an existing one concerning that category is recommended by the researcher.

Keywords: adapt, ergonomics, ethnography, interaction design

Procedia PDF Downloads 227
8801 An Effective Route to Control of the Safety of Accessing and Storing Data in the Cloud-Based Data Base

Authors: Omid Khodabakhshi, Amir Rozdel

Abstract:

The subject of cloud computing security research has allocated a number of challenges and competitions because the data center is comprised of complex private information and are always faced various risks of information disclosure by hacker attacks or internal enemies. Accordingly, the security of virtual machines in the cloud computing infrastructure layer is very important. So far, there are many software solutions to develop security in virtual machines. But using software alone is not enough to solve security problems. The purpose of this article is to examine the challenges and security requirements for accessing and storing data in an insecure cloud environment. In other words, in this article, a structure is proposed for the implementation of highly isolated security-sensitive codes using secure computing hardware in virtual environments. It also allows remote code validation with inputs and outputs. We provide these security features even in situations where the BIOS, the operating system, and even the super-supervisor are infected. To achieve these goals, we will use the hardware support provided by the new Intel and AMD processors, as well as the TPM security chip. In conclusion, the use of these technologies ultimately creates a root of dynamic trust and reduces TCB to security-sensitive codes.

Keywords: code, cloud computing, security, virtual machines

Procedia PDF Downloads 191
8800 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization

Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon

Abstract:

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.

Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization

Procedia PDF Downloads 445