Search results for: scientific data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27059

Search results for: scientific data mining

25109 Unraveling the Complexity of Postpartum Distress: Examining the Influence of Alexithymia, Social Support, Partners' Support, and Birth Satisfaction on Postpartum Distress among Bulgarian Mothers

Authors: Stela Doncheva

Abstract:

Postpartum distress, encompassing depressive symptoms, obsessions, and anxiety, remains a subject of significant scientific interest due to its prevalence among individuals giving birth. This critical and transformative period presents a multitude of factors that impact women's health. On the one hand, variables such as social support, satisfaction in romantic relationships, shared newborn care, and birth satisfaction directly affect the mental well-being of new mothers. On the other hand, the interplay of hormonal changes, personality characteristics, emotional difficulties, and the profound life adjustments experienced by mothers can profoundly influence their self-esteem and overall physical and emotional well-being. This paper extensively explores the factors of alexithymia, social support, partners' support, and birth satisfaction to gain deeper insights into their impact on postpartum distress. Utilizing a qualitative survey consisting of six self-reflective questionnaires, this study collects valuable data regarding the individual postpartum experiences of Bulgarian mothers. The primary objective is to enrich our understanding of the complex factors involved in the development of postpartum distress during this crucial period. The results shed light on the intricate nature of the problem and highlight the significant influence of bio-psycho-social elements. By contributing to the existing knowledge in the field, this research provides valuable implications for the development of interventions and support systems tailored to the unique needs of mothers in the postpartum period. Ultimately, this study aims to improve the overall well-being of new mothers and promote optimal maternal health during the postpartum journey.

Keywords: maternal mental health, postpartum distress, postpartum depression, postnatal mothers

Procedia PDF Downloads 68
25108 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 93
25107 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 297
25106 Generation Z: Insights into Travel Behavior

Authors: Joao Ferreira Do Rosario, Nuno Gustavo, Ana Machado, Lurdes Calisto, Luisa Carvalho, Georgette Andraz

Abstract:

Currently, tourism small and medium enterprises (TSMEs) face serious economic and financial problems, making recovery efforts difficult. How the pandemic will affect tourists' behavior is still to be known. Will tourists be even more cautious regarding their choices or, on the contrary, will they be more adventurers with an enormous desire to travel in search of the lost freedom? Tourists may become even more demanding when traveling, more austere, or less concerned and eager to socialize. Adjusting to this "new tourist" is an added challenge for tourism service providers. Generation Z made up of individuals born in 1995 and following years, currently tends to assume a particular role and meaning in the present and future economic and social context, considering that we are facing the youngest workforce as well as tomorrow's consumers. This generation is distinguished from others as it is the first generation to combine a high level of education and technological knowledge and to fully experience the digital world. These young people are framed by a new value system that can explain new behaviours and consumption, namely, in the context of tourism. All these considerations point to the importance of investigating this target group as it is essential to understand how these individuals perceive, understand, act, and can be involved in a new environment built around a society regulated by new priorities and challenges of a sustainable nature. This leads not only to a focus on short-term market choices but mainly to predict future choices from a longer-term perspective. Together with the social background of a person, values are considered a stable antecedent of behavior and might therefore predict not just immediate, but also future choices. Furthermore, the meaning attributed to travel has a general connotation and goes beyond a specific travel choice or experience. In other words, values and travel's meaning form a chain of influences on the present and future travel behavior. This study explores the social background and values of Generation Z travelers vs the meaning these tourists give to travel. The aim is to discover in their present behavior cues to predict travel choices so that the future of tourism can be secured. This study also provides data for predicting the tourism choices of youngsters in the more immediate future. Methodologically, a quantitative approach was adopted based on the collection of data through a survey. Since academic research on Generation Z of tourists is still scarce, it is expected to contribute to deepening scientific knowledge in this area. Furthermore, it is expected that this research will support tourism professionals in defining differentiated marketing strategies and adapted to the requirements of this target, in a new time.

Keywords: Generation Z, travel behavior, travel meaning, Generation Z Values

Procedia PDF Downloads 225
25105 Potentials of Underutilised Crops in the Nigerian Farming Systems for Sustainable Food Production and Economic Empowerment

Authors: Jesse Silas Mshelia, Michael Mamman Degri, Akeweta Emmanuel Samaila

Abstract:

This review was conducted in the North-Eastern part of Nigeria where there are a lot of challenges of poverty and low level of productivity of farmlands as a result of dwindling soil fertility and dependence on crops that are not so much adopted to the soil and climatic condition and the prevailing farming systems of the area which is predominantly mixed cropping. The crops that are neglected are well fitted into this system of production and yield better with the low level of input and management and give a higher profit margin. These crops, the farmers have mastered the production techniques, but do not have the scientific knowledge to improve the quality of the seed and the products hence need the intervention of modern technologies to benefit maximally from the full potentials of these crops.

Keywords: farming systems, neglected crops, potentials, underutilised

Procedia PDF Downloads 375
25104 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology

Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar

Abstract:

Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.

Keywords: data privacy, distributed system, federated learning, machine learning

Procedia PDF Downloads 136
25103 Retrospective Cartography of Tbilisi and Surrounding Area

Authors: Dali Nikolaishvili, Nino Khareba, Mariam Tsitsagi

Abstract:

Tbilisi has been a capital of Georgia since the 5ᵗʰ century. City area was covered by forest in historical past. Nowadays the situation has been changing dramatically. Dozens of problems are caused by damages/destruction of green cover and solution, at one glance, seems to be uncomplicated (planting trees and creating green quarters), but on the other hand, according to the increasing tendency, the built up of areas still remains unsolved. Finding out the ways to overcome such obstacles is important even for protecting the health of society. Making of Retrospective cartography of the forest area of Tbilisi with use of GIS technology and remote sensing was the main aim of the research. Research about the dynamic of forest-cover in Tbilisi and its surroundings included the following steps: assessment of the dynamic of forest in Tbilisi and its surroundings. The survey was mainly based on the retrospective mapping method. Using of GIS technology, studying, comparing and identifying the narrative sources was the next step. And the last one was analyzed of the changes from the 80s to the present days on the basis of decryption of remotely sensed images. After creating a unified cartographic basis, the mapping and plans of different periods have been linked to this geodatabase. Data about green parks, individual old plants existing in the private yards and respondents' Information (according to a questionnaire created in advance) was added to the basic database, the general plan of Tbilisi and Scientific works as well. On the basis of analysis of historic, including cartographic sources, forest-cover maps for different periods of time were made. In addition, was made the catalog of individual green parks (location, area, typical composition, name and so on), which was the basis of creating several thematic maps. Areas with a high rate of green area degradation were identified. Several maps depicting the dynamics of forest cover of Tbilisi were created and analyzed. The methods of linking the data of the old cartographic sources to the modern basis were developed too, the result of which may be used in Urban Planning of Tbilisi. Understanding, perceiving and analyzing the real condition of green cover in Tbilisi and its problems, in turn, will help to take appropriate measures for the maintenance of ancient plants, to develop forests and to plan properly parks, squares, and recreational sites. Because the healthy environment is the main condition of human health and implies to the rational development of the city.

Keywords: catalogue of green area, GIS, historical cartography, cartography, remote sensing, Tbilisi

Procedia PDF Downloads 137
25102 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, YongBeum Kim

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed

Procedia PDF Downloads 485
25101 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems

Authors: Sreejith Gopinath, Aspen Olmsted

Abstract:

This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.

Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference

Procedia PDF Downloads 135
25100 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law

Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić

Abstract:

The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.

Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law

Procedia PDF Downloads 143
25099 A Pragmatic Study of Falnama Texts Based on Critical Discourse Analysis Approach

Authors: Raziyeh Mashhadi Moghadam

Abstract:

Persian writings in the form of stories, scientific articles, historiographies, biographies, and philosophical, religious, and poetic arguments have established their presence in the past and present. Any piece of text is composed in a unique style depending on its content and subject. In this paper, a manuscript called Falnama of the Prophet is reviewed. Only a few scattered pages of this version are extant, and the author, using the name of twenty-four prophets, seeks to explore the presence and future of the reader. This version is analyzed based on Norman Fairclough’s Critical Discourse Analysis (CDA) approach to unravel the underlying processes in this type of manuscript. The spelling of some words and sentences is different from that of the new written Persian version.

Keywords: application of Falnama texts, critical discourse analysis, Fairclough’s approach

Procedia PDF Downloads 109
25098 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping

Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh

Abstract:

Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.

Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A

Procedia PDF Downloads 172
25097 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions

Procedia PDF Downloads 53
25096 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 480
25095 Elements of Sector Benchmarking in Physical Education Curriculum: An Indian Perspective

Authors: Kalpana Sharma, Jyoti Mann

Abstract:

The study was designed towards institutional analysis for a clear understanding of the process involved in functioning and layout of determinants influencing physical education teacher’s education program in India. This further can be recommended for selection of parameters for creating sector benchmarking for physical education teachers training institutions across India. 165 stakeholders involving students, teachers, parents, administrators were surveyed from the identified seven institutions and universities from different states of India. They were surveyed on the basis of seven broad parameters which were associated with the post graduate physical education program in India. A physical education program assessment tool of 52 items was designed to administer it among the stakeholders selected for the survey. An item analysis of the contents was concluded through the review process from selected experts working in higher education with experience in teacher training program in physical education. The data was collected from the stakeholders of the selected institutions through Physical Education Program Assessment Tool (PEPAT). The hypothesis that PE teacher education program is independent of physical education institutions was significant. The study directed a need towards robust admission process emphasizing on identification, selection of potential candidates and quality control of intake with the scientific process developed according to the Indian education policies and academic structure. The results revealed that the universities do not have similar functional and delivery process related to the physical education teacher training program. The study reflects towards the need for physical education universities and institutions to identify the best practices to be followed regarding the functioning of delivery of physical education programs at various institutions through strategic management studies on the identified parameters before establishing strict standards and norms for achieving excellence in physical education in India.

Keywords: assessment, benchmarking, curriculum, physical education, teacher education

Procedia PDF Downloads 561
25094 A Snapshot of Agricultural Waste in the European Union

Authors: Margarida Soares, Zlatina Genisheva, Lucas Nascimento, André Ribeiro, Tiago Miranda, Eduardo Pereira, Joana Carvalho

Abstract:

In the current global context, we face a significant challenge: the rapid population increase combined with the pressing need for sustainable management of agro-industrial waste. Beyond understanding how population growth impacts waste generation, it is essential to first identify the primary types of waste produced and the countries responsible to guide targeted actions. This study presents key statistical data on waste production from the agriculture, forestry, and fishing sectors across the European Union, alongside information on the agricultural areas dedicated to crop production in each European Union country. These insights will form the basis for future research into waste production by crop type and country to improve waste management practices and promote recovery methods that are vital for environmental sustainability. The agricultural sector must stay at the forefront of scientific and technological advancements to meet climate change challenges, protect the environment, and ensure food and health security. The study's findings indicate that population growth significantly increases pressure on natural resources, leading to a rise in agro-industrial waste production. EUROSTAT data shows that, in 2020, the agriculture, forestry, and fishing sectors produced over 21 million tons of waste. Spain emerged as the largest producer, contributing nearly 30% of the EU's total waste in these sectors. Furthermore, five countries—Spain, the Netherlands, France, Sweden, and Germany—were responsible for producing more than two-thirds of the waste from these sectors. Regarding agricultural land use, the data for 2020 revealed that around two-thirds of the total agricultural area was concentrated in six countries: France, Spain, Germany, Poland, Romania, and Italy. Regarding waste production per capita, the Netherlands had the highest figures in the EU for 2020. The data presented in this study highlights the urgent need for action in managing agricultural waste in the EU. As population growth continues to drive up demand for agricultural products, waste generation will inevitably rise unless significant changes are made in managing of agro-industrial waste. The countries must lead the way in adopting technological waste management strategies that focus on reducing, reusing, and recycling waste to benefit both the environment and society. Equally important is the need to promote collaborative efforts between governments, industries, and research institutions to develop and implement technologies that transform waste into valuable resources. The insights from this study are critical for informing future strategies to improve the management and valorization of waste from the agro-industrial sector. One of the most promising approaches is adopting circular economy principles to create closed-loop systems that minimize environmental impacts. By rethinking waste as a valuable resource rather than a by-product, agricultural industries can contribute to more sustainable practices that support both environmental health and economic growth.

Keywords: agricultural area, agricultural waste, circular economy, environmental challenges, population growth

Procedia PDF Downloads 17
25093 The Development of User Behavior in Urban Regeneration Areas by Utilizing the Floating Population Data

Authors: Jung-Hun Cho, Tae-Heon Moon, Sun-Young Heo

Abstract:

A lot of urban problems, caused by urbanization and industrialization, have occurred around the world. In particular, the creation of satellite towns, which was attributed to the explicit expansion of the city, has led to the traffic problems and the hollowization of old towns, raising the necessity of urban regeneration in old towns along with the aging of existing urban infrastructure. To select urban regeneration priority regions for the strategic execution of urban regeneration in Korea, the number of population, the number of businesses, and deterioration degree were chosen as standards. Existing standards had a limit in coping with solving urban problems fundamentally and rapidly changing reality. Therefore, it was necessary to add new indicators that can reflect the decline in relevant cities and conditions. In this regard, this study selected Busan Metropolitan City, Korea as the target area as a leading city, where urban regeneration such as an international port city has been activated like Yokohama, Japan. Prior to setting the urban regeneration priority region, the conditions of reality should be reflected because uniform and uncharacterized projects have been implemented without a quantitative analysis about population behavior within the region. For this reason, this study conducted a characterization analysis and type classification, based on the user behaviors by using representative floating population of the big data, which is a hot issue all over the society in recent days. The target areas were analyzed in this study. While 23 regions were classified as three types in existing Busan Metropolitan City urban regeneration priority region, 23 regions were classified as four types in existing Busan Metropolitan City urban regeneration priority region in terms of the type classification on the basis of user behaviors. Four types were classified as follows; type (Ⅰ) of young people - morning type, Type (Ⅱ) of the old and middle-aged- general type with sharp floating population, type (Ⅲ) of the old and middle aged-24hour-type, and type (Ⅳ) of the old and middle aged with less floating population. Characteristics were shown in each region of four types, and the study results of user behaviors were different from those of existing urban regeneration priority region. According to the results, in type (Ⅰ) young people were the majority around the existing old built-up area, where floating population at dawn is four times more than in other areas. In Type (Ⅱ), there were many old and middle-aged people around the existing built-up area and general neighborhoods, where the average floating population was more than in other areas due to commuting, while in type (Ⅲ), there was no change in the floating population throughout 24 hours, although there were many old and middle aged people in population around the existing general neighborhoods. Type (Ⅳ) includes existing economy-based type, central built-up area type, and general neighborhood type, where old and middle aged people were the majority as a general type of commuting with less floating population. Unlike existing urban regeneration priority region, these types were sub-divided according to types, and in this study, approach methods and basic orientations of urban regeneration were set to reflect the reality to a certain degree including the indicators of effective floating population to identify the dynamic activity of urban areas and existing regeneration priority areas in connection with urban regeneration projects by regions. Therefore, it is possible to make effective urban plans through offering the substantial ground by utilizing scientific and quantitative data. To induce more realistic and effective regeneration projects, the regeneration projects tailored to the present local conditions should be developed by reflecting the present conditions on the formulation of urban regeneration strategic plans.

Keywords: floating population, big data, urban regeneration, urban regeneration priority region, type classification

Procedia PDF Downloads 214
25092 Data-Driven Decision Making: Justification of Not Leaving Class without It

Authors: Denise Hexom, Judith Menoher

Abstract:

Teachers and administrators across America are being asked to use data and hard evidence to inform practice as they begin the task of implementing Common Core State Standards. Yet, the courses they are taking in schools of education are not preparing teachers or principals to understand the data-driven decision making (DDDM) process nor to utilize data in a much more sophisticated fashion. DDDM has been around for quite some time, however, it has only recently become systematically and consistently applied in the field of education. This paper discusses the theoretical framework of DDDM; empirical evidence supporting the effectiveness of DDDM; a process a department in a school of education has utilized to implement DDDM; and recommendations to other schools of education who attempt to implement DDDM in their decision-making processes and in their students’ coursework.

Keywords: data-driven decision making, institute of higher education, special education, continuous improvement

Procedia PDF Downloads 388
25091 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 393
25090 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 89
25089 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 148
25088 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control

Procedia PDF Downloads 566
25087 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach

Authors: Daniel Benson, Yundan Gong, Hannah Kirk

Abstract:

Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.

Keywords: international aid, geocoding, subnational data, natural language processing, machine learning

Procedia PDF Downloads 82
25086 Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano

Authors: Guo Wenyu, Qu Youli

Abstract:

A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza & Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the φ is more important than the alphabet size on the compression ratio. Unevenly distributed data φ makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time.

Keywords: compressed suffix array, self-indexing, partitioned Elias-Fano, PEF-CSA

Procedia PDF Downloads 253
25085 Data, Digital Identity and Antitrust Law: An Exploratory Study of Facebook’s Novi Digital Wallet

Authors: Wanjiku Karanja

Abstract:

Facebook has monopoly power in the social networking market. It has grown and entrenched its monopoly power through the capture of its users’ data value chains. However, antitrust law’s consumer welfare roots have prevented it from effectively addressing the role of data capture in Facebook’s market dominance. These regulatory blind spots are augmented in Facebook’s proposed Diem cryptocurrency project and its Novi Digital wallet. Novi, which is Diem’s digital identity component, shall enable Facebook to collect an unprecedented volume of consumer data. Consequently, Novi has seismic implications on internet identity as the network effects of Facebook’s large user base could establish it as the de facto internet identity layer. Moreover, the large tracts of data Facebook shall collect through Novi shall further entrench Facebook's market power. As such, the attendant lock-in effects of this project shall be very difficult to reverse. Urgent regulatory action is therefore required to prevent this expansion of Facebook’s data resources and monopoly power. This research thus highlights the importance of data capture to competition and market health in the social networking industry. It utilizes interviews with key experts to empirically interrogate the impact of Facebook’s data capture and control of its users’ data value chains on its market power. This inquiry is contextualized against Novi’s expansive effect on Facebook’s data value chains. It thus addresses the novel antitrust issues arising at the nexus of Facebook’s monopoly power and the privacy of its users’ data. It also explores the impact of platform design principles, specifically data portability and data portability, in mitigating Facebook’s anti-competitive practices. As such, this study finds that Facebook is a powerful monopoly that dominates the social media industry to the detriment of potential competitors. Facebook derives its power from its size, annexure of the consumer data value chain, and control of its users’ social graphs. Additionally, the platform design principles of data interoperability and data portability are not a panacea to restoring competition in the social networking market. Their success depends on the establishment of robust technical standards and regulatory frameworks.

Keywords: antitrust law, data protection law, data portability, data interoperability, digital identity, Facebook

Procedia PDF Downloads 124
25084 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami

Abstract:

Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 424
25083 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites

Authors: Mehran Nasiri, Ardeshir Poornemat

Abstract:

The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.

Keywords: current situation, talent finding, ideal situation, instructors (AFC)

Procedia PDF Downloads 214
25082 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 204
25081 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 319
25080 Violence against Police Officers in Germany

Authors: Anne T. Herr, Clemens Lorei

Abstract:

Employees of organizations with security tasks, such as emergency services, public order services, or police forces, work every day to ensure people's safety. Violence against police is, therefore, a relevant topic both socially and politically. An increase in violence is often discussed without there being any verifiable and generally valid data. So far, scientific research has mainly focused on offender characteristics and crime statistics. These surveys are mostly subjective, retrospective, and neglect the dynamics and interactions in concrete violent situations. Therefore, more recent research methods attempt to capture the issue of violence against emergency forces more comprehensively. However, the operationalization of the constructs and the methodological approach pose particular challenges. This contribution provides an overview of new perspectives on the understanding of violent assaults and identifies current research gaps. In addition, a new research project of the Hessian University of Police and Administration in Germany is presented. In the 'AMBOSafe' study, different theoretical backgrounds for understanding violence against police and emergency services personnel will be combined in order to capture as many different perspectives of violent assaults as possible in a multimodal research approach. In a retrospective as well as in a longitudinal survey, the conditions of escalation dynamics in the assaults are recorded and supplemented by the current and valid prevalence of physical and verbal assaults in a period of four months. In addition, qualitative interviews with those affected will be used to record more detailed descriptions of and the feelings during the assaults, as well as possible causes and connections between the different groups of people. In addition to the reports of the police forces, the motives of the attackers will be collected and supplemented by analyzing the criminal case files. This knowledge can contribute to a more comprehensive understanding of violent assaults against police forces in order to be able to derive scientifically based preventive measures.

Keywords: assaults, crime statistics, escalation dynamics, police

Procedia PDF Downloads 115