Search results for: message passing neural network
3983 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4
Procedia PDF Downloads 5543982 Calculate Product Carbon Footprint through the Internet of Things from Network Science
Authors: Jing Zhang
Abstract:
To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment
Procedia PDF Downloads 1183981 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion
Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam
Abstract:
Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites
Procedia PDF Downloads 3213980 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1503979 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 673978 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 993977 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 873976 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location
Authors: I. Touaїbia, E. Azzag, O. Narjes
Abstract:
Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.Keywords: distribution networks, fault location, TDR, underground cable
Procedia PDF Downloads 5413975 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 423974 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms
Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut
Abstract:
This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing
Procedia PDF Downloads 1333973 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5423972 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1593971 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression
Authors: J. S. Saini, P. P. K. Sandhu
Abstract:
The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control
Procedia PDF Downloads 3403970 ChaQra: A Cellular Unit of the Indian Quantum Network
Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh
Abstract:
Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.Keywords: quantum network, quantum key distribution, quantum security, quantum information
Procedia PDF Downloads 603969 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1133968 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 953967 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study
Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh
Abstract:
Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.Keywords: education, smartphone, social networks, teenagers
Procedia PDF Downloads 4543966 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1283965 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment
Authors: P. L. Cheng, I. N. Umar
Abstract:
Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.Keywords: e-learning, learning management system, online forum, social network analysis
Procedia PDF Downloads 3923964 Advancing the Hi-Tech Ecosystem in the Periphery: The Case of the Sea of Galilee Region
Authors: Yael Dubinsky, Orit Hazzan
Abstract:
There is a constant need for hi-tech innovation to be decentralized to peripheral regions. This work describes how we applied design science research (DSR) principles to define what we refer to as the Sea of Galilee (SoG) method. The goal of the SoG method is to harness existing and new technological initiatives in peripheral regions to create a socio-technological network that can initiate and maintain hi-tech activities. The SoG method consists of a set of principles, a stakeholder network, and actual hi-tech business initiatives, including their infrastructure and practices. The three cycles of DSR, the Relevance, Design, and Rigor cycles, layout a research framework to sharpen the requirements, collect data from case studies, and iteratively refine the SoG method based on the existing knowledge base. We propose that the SoG method can be deployed by regional authorities that wish to be considered smart regions (an extension of the notion of smart cities).Keywords: design science research, socio-technological initiatives, Sea of Galilee method, periphery stakeholder network, hi-tech initiatieves
Procedia PDF Downloads 1333963 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience
Authors: Parisa Mansour
Abstract:
Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye
Procedia PDF Downloads 433962 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 1003961 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network
Authors: Sandesh Achar
Abstract:
Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.
Procedia PDF Downloads 463960 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 3503959 Wireless Communication in Sunlight
Authors: Karmveer Sheoran
Abstract:
To make wireless communication a vast success is to use sunlight for wireless communication. We can use sunlight in upper atmosphere to encode messages to efficiently use sunlight. This use of sunlight for wireless communication will need encoders which will encode sunlight according to our message and then resultant will be spread in all atmospheres wherever sunlight goes, it will take our messages with it. With minimum requirement of cost in equipment used at the edge of atmosphere is where sunlight is being encoded. In this way a very high efficient wireless communication system can be designed. On receiver side we will need light detectors which will detect sunlight variations and will finally give the information contained i it. Sunlight can be encoded at a very high speed that nobody will be annoyed by flickering. It will be most sophisticated and efficient wireless communication ever designed. There are far more possibilities in this sunlight communication. Let us call it “Sunlight Communication".Keywords: sunlight communication, emerging trends, wireless communication, wifi
Procedia PDF Downloads 4053958 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer
Authors: Klas Elmquist, Anders Larsson
Abstract:
Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.Keywords: modulator, solid-state, PFN-system, thyratron
Procedia PDF Downloads 1363957 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques
Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul
Abstract:
In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.Keywords: natural gas, pipeline network, UFG, transmission pack, AGA
Procedia PDF Downloads 973956 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 3833955 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 1863954 Tracing Back the Bot Master
Authors: Sneha Leslie
Abstract:
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.Keywords: bonet, DDoS attack, network security, detection system, metasploit framework
Procedia PDF Downloads 255