Search results for: marshall stability
1495 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water
Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim
Abstract:
The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)
Procedia PDF Downloads 2891494 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks
Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain
Abstract:
As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)
Procedia PDF Downloads 1921493 The Role of Estradiol-17β and Type IV Collagen on the Regulation and Expression Level Of C-Erbb2 RNA and Protein in SKOV-3 Ovarian Cancer Cell Line
Authors: Merry Meryam Martgrita, Marselina Irasonia Tan
Abstract:
One of several aggresive cancer is cancer that overexpress c-erbB2 receptor along with the expression of estrogen receptor. Components of extracellular matrix play an important role to increase cancer cells proliferation, migration and invasion. Both components can affect cancer development by regulating the signal transduction pathways in cancer cells. In recent research, SKOV-3 ovarian cancer cell line, that overexpress c-erbB2 receptor was cultured on type IV collagen and treated with estradiol-17β, to reveal the role of both components on RNA and protein level of c-erbB2 receptor. In this research we found a modulation phenomena of increasing and decreasing of c-erbB2 RNA level and a stabilisation phenomena of c-erbB2 protein expression due to estradiol-17β and type IV collagen. It seemed that estradiol-17β has an important role to increase c-erbB2 transcription and the stability of c-erbB2 protein expression. Type IV collagen has an opposite role. It blocked c-erbB2 transcription when it bound to integrin receptor in SKOV-3 cells.Keywords: c-erbB2, estradiol-17β, SKOV-3, type IV collagen
Procedia PDF Downloads 2841492 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth
Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad
Abstract:
In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.Keywords: dual-mode resonators, perturbation theory, reconfigurable filters, software defined radio, cognitine radio
Procedia PDF Downloads 1671491 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens
Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa
Abstract:
Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens
Procedia PDF Downloads 3111490 Environmental Study on Urban Disinfection Using an On-site Generation System
Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd
Abstract:
In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.Keywords: disinfection, free available chlorine, on-site generation, sodium hypochlorite
Procedia PDF Downloads 1181489 Limit State Evaluation of Bridge According to Peak Ground Acceleration
Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim
Abstract:
In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.Keywords: allowable stress, limit state, safety factor, peak ground acceleration
Procedia PDF Downloads 2131488 Basavaraj Kabade, K. T. Nagaraja, Swathi Ramanathan, A. Veeraragavan, P. S. Reashma
Authors: Dechrit Maneetham
Abstract:
Pick and place task is one among the most important tasks in industrial field handled by 'Selective Compliance Assembly Robot Arm' (SCARA). Repeatability with high-speed movement in a horizontal plane is a remarkable feature of this type of manipulator. The challenge of design SCARA is the difficulty of achieving stability of high-speed movement with the long length of links. Shorter links arm can move more stable. This condition made the links should be considered restrict then followed by restriction of operation area (workspace). In this research, authors demonstrated on expanding SCARA robot’s workspace in horizontal area via linear sliding actuator that embedded to base link of the robot arm. With one additional prismatic joint, the previous robot manipulator with 3 degree of freedom (3-DOF), 2 revolute joints and 1 prismatic joint becomes 4-DOF PRRP manipulator. This designation increased workspace of robot from 0.5698m² performed by the previous arm (without linear actuator) to 1.1281m² by the proposed arm (with linear actuator). The increasing rate was about 97.97% of workspace with the same links' lengths. The result of experimentation also indicated that the operation time spent to reach object position was also reduced.Keywords: kinematics, linear sliding actuator, manipulator, control system
Procedia PDF Downloads 2621487 Partially Fluorinated Electrolyte for High-Voltage Cathode for Lithium-Ion Battery
Authors: Gebregziabher Brhane Berhe, Wei-Nien Su, Bing Joe Hwang
Abstract:
A new lithium-ion battery is configured by coupling sulfurized carbon anode and high voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) cathode. The anode is derived from sulfurized polyacrylonitrile (S-C(PAN)). Severe capacity fading usually becomes unavoidable due to the oxidative decomposition of solvents, primarily when a conventional carbonate electrolyte with 1 M lithium hexafluorophosphate (LiPF6) is employed. Fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (TTE) are formulated as the best electrolyte (3:2:5 in vol. ratio) for this new high-voltage lithium-ion battery to mitigate this capacity fading and improve the adaptability of the S-C(PAN) and LNMO. The discharge capacity of a full cell made with 1 M lithium hexafluorophosphate (LiPF6) in FEC/EMC/TTE (3:2:5) electrolyte reaches 688 mAh g⁻¹ at a rate of 2 C, while 19 mAh g⁻¹ for the control electrolyte. X-ray photoelectron spectroscopy (XPS) results confirm that the fluorinated electrolyte effectively stabilizes both surfaces of S-C(PAN) and LNMO in the full cell. Compared to the control electrolyte, the developed electrolyte enhances the cyclic stability and rate capability of both half cells (Li//S-C(PAN and Li//LiNi₀.₅Mn₁.₅O₄) and S-C(PAN)//LiNi₀.₅Mn₁.₅O₄ full cells.Keywords: fluorinated electrolyte, high voltage, lithium-ion battery, polyacrylonitrile
Procedia PDF Downloads 131486 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell
Authors: Nawang Chhunid, Gagnesh Kumar
Abstract:
On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.Keywords: DRAM Cell, Read Access Time, Retention Time, Average Power dissipation
Procedia PDF Downloads 3131485 Development a Battery of Measurements to Assess Giftedness Initiatives in Light of the Objectives of Saudi Arabia's Future Vision of Gifted Education
Authors: Saeed M. Al Qahtani, Alaa Eldin A. Ayoub
Abstract:
The study aimed to develop a battery of measures to assessment gifted initiatives in Saudi Arabia. The battery consisted of 17 measures developed in light of Saudi Arabia's future vision objectives for gifted education. A battery was applied to 193 gifted students who benefit from gifted initiatives and programs, 42 teachers of gifted as well as, 40 experts of gifted. Samples were taken from three main regions: Riyadh, Sharqia, Gharbia in Saudi Arabia. The results indicated that battery measures have a reliability and stability index ranging from 0.6 to 0.87. Besides that, results showed that the educational environment lacks many basic components such as facilities, laboratories, and activities that may stimulate creativity and innovation. Furthermore, results showed that there is a weakness in private sector involvement in the construction of educational buildings, special centers for gifted people and the provision of certain facilities that support talented programs. The recommendations of the study indicate the need for the private sector participation in the provision of services and projects for the care of gifted students in Saudi Arabia.Keywords: battery of measures, gifted care initiatives, Saudi future vision, gifted student
Procedia PDF Downloads 1711484 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 731483 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale
Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.
Abstract:
Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).Keywords: quartz-sericite, kaolinite, mullite, thermal processing
Procedia PDF Downloads 4141482 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic
Authors: M. Iruleswari, A. Jeyapaul Murugan
Abstract:
Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table
Procedia PDF Downloads 4571481 Cellulose Acetate Nanofiber Modification for Regulating Astrocyte Activity via Simple Heat Treatment
Authors: Sang-Myung Jung, Jeong Hyun Ju, Gwang Heum Yoon, Hwa Sung Shin
Abstract:
Central nervous system (CNS) consists of neuronal cell and supporting cells. Astrocytes are the most common supporting cells and play roles in metabolism between neurons and blood vessel. For this function, engineered astrocytes have been studied as a therapeutic source for CNS injury. In neural tissue engineering, nanofiber has been suggested as an effective scaffold for providing structure and mechanical properties influencing physiology. Cellulose acetate (CA) has been investigated for material to fabricate scaffold because of its biocompatibility, biodegradability and fine thermal stability. In this research, CA nanofiber was modified via heat treatment and its effect on astrocyte activity was evaluated. Adhesion and viability of astrocyte were increased in proportion to stiffness. Additionally, expression of GFAP, a marker of astrocyte activation, was increased via stiffness of scaffold. This research suggests a simple modification method to change stiffness of CA nanofiber and shows cellular behavior affecting stiffness of three-dimensional scaffold independently. For the results, we highlight that the stiffness is a factor to regulate astrocyte activity.Keywords: astrocyte, cellulose acetate, cell therapy, stiffness of scaffold
Procedia PDF Downloads 4771480 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method
Authors: Samera Salimpour Abkenar
Abstract:
In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.Keywords: eco-friendly, natural dyes, silk, traditional dyeing
Procedia PDF Downloads 1901479 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College
Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers
Abstract:
There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.Keywords: diversity, motivation, learning, ethnic minority achievement, higher education
Procedia PDF Downloads 5171478 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber
Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria
Abstract:
Bio-composites derived from plant fiber and bio-derived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based. In this research, the green phenolic resin was used as a matrix and oil palm empty fruit bunch fiber (EFB) was used as filler. The matrix was synthesized from soda lignin, phenol and hydrochloric acid as a catalyst. The phenolic resin was synthesized via liquefaction and condensation to enhance the combination of phenol during the process. Later, the phenolic resin was mixed with EFB by using mechanical stirrer and was molded with hot press at 180 oC. In this research, the composites were prepared with EFB content of 5%, 10%, 15% and 20%. The samples that viewed under scanning electron microscopy (SEM) showed that the EFB filler remained embedded in the resin. From impact and hardness testing, samples 10% of EFB showed the optimum properties meanwhile sample 15% showed the optimum properties for flexural testing. Thermal stability of the composites was investigated using thermogravimetric (TGA) analysis and found that the weight loss and the activation energy (Ea) of the composites samples were decreased as the filler content increased.Keywords: EFB, liquefaction, phenol formaldehyde, lignin
Procedia PDF Downloads 5891477 Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle
Authors: Wenxiao Liu, Kun Zhang, Yongqing Li
Abstract:
Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection.Keywords: bovine disease, BoHV-1, ELISA, ICS assay
Procedia PDF Downloads 741476 Functional Properties of Sunflower Protein Concentrates Extracted Using Different Anti-greening Agents - Low-Fat Whipping Cream Preparation
Authors: Tamer M. El-Messery
Abstract:
By-products from sunflower oil extraction, such as sunflower cakes, are rich sources of proteins with desirable functional properties for the food industry. However, challenges such as sensory drawbacks and the presence of phenolic compounds have hindered their widespread use. In this study, sunflower protein concentrates were obtained from sunflower cakes using different ant-greening solvents (ascorbic acid (ASC) and N-acetylcysteine (NAC)), and their functional properties were evaluated. The color of extracted proteins ranged from dark green to yellow, where the using of ASC and NAC agents enhanced the color. The protein concentrates exhibited high solubility (>70%) and antioxidant activity, with hydrophobicity influencing emulsifying activity. Emulsions prepared with these proteins showed stability and microencapsulation efficiency. Incorporation of protein concentrates into low-fat whipping cream formulations increased overrun and affected color characteristics. Rheological studies demonstrated pseudoplastic behavior in whipped cream, influenced by shear rates and protein content. Overall, sunflower protein isolates showed promising functional properties, indicating their potential as valuable ingredients in food formulations.Keywords: functional properties, sunflower protein concentrates, antioxidant capacity, ant-greening agents, low-fat whipping cream
Procedia PDF Downloads 481475 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study
Authors: Tsu-Hsu Yen
Abstract:
The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability
Procedia PDF Downloads 1151474 Evaluation of Antimicrobial Properties of Lactic Acid Bacteria of Enterococcus Genus
Authors: Kristina Karapetyan, Flora Tkhruni, Tsovinar Balabekyan, Arevik Israyelyan, Tatyana Khachatryan
Abstract:
The ability of the lactic acid bacteria (LAB) to prevent and cure a variety of diseases, their protective role against infections and colonization of pathogenic microorganisms in the digestive tract, has lead to the coining of the term probiotics or pro-life. LAB inhibiting the growth of pathogenic and food spoilage microorganisms, maintaining the nutritive quality and improving the shelf life of foods. They have also been used as flavor and texture producers. Enterococcus strains have been used for treatment of diseases such as diarrhea or antibiotic associated diarrhea, inflammatory pathologies that affect colon such as irritable bowel syndrome, or immune regulation, diarrhea caused by antibiotic treatments. The obtaining and investigation of biological properties of proteinoceous antibiotics, on the basis of probiotic LAB shown, that bacteriocins, metabiotics, and peptides of LAB represent bactericides have a broad range of activity and are excellent candidates for development of new prophylactic and therapeutic substances to complement or replace conventional antibiotics. The genotyping by 16S rRNA sequencing for LAB were used. Cell free culture broth (CFC) broth was purified by the Gel filtration method on the Sephadex Superfine G 25 resin. Antimicrobial activity was determined by spot-on-lawn method and expressed in arbitrary units (AU/ml). The diversity of multidrug-resistance (MDR) of pathogenic strains to antibiotics, most widely used for treatment of human diseases in the Republics of Armenia and Nagorno Karabakh were examined. It was shown, that difference of resistance of pathogens to antibiotics depends on their isolation sources. The influences of partially purified antimicrobial preparations (AMP), obtained from the different strains of Enterococcus genus on the growth of MDR pathogenic bacteria were investigated. It was shown, that bacteriocin containing partially purified preparations, obtained from different strains of Enterococcus faecium and durans species, possess bactericidal or bacteriostatic activity against antibiotic resistant intestinal, spoilage and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus, E. coli, and Salmonella. Endemic strains of LAB, isolated from Matsoni made from donkey, buffalo and goat milk, shown broad spectrum of activity against food spoiling microorganisms, moulds and fungi, such as Salmonella sp., Esherichia coli, Aspergillus and Penicillium species. Highest activity against MDR pathogens shown bacteria, isolated from goat milk products. High stability of the investigated strains of the genus Enerococcus, isolated from samples of matsun from different regions of Nagorno-Karabakh (NKR) to the antibiotics was shown. The obtained data show high stability of the investigated different strains of the genus Enerococcus. The high genetic diversity in Enterococcus group suggests adaptations for specific mutations in different environments. Thus, endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms isolated from different sources and belong to different taxonomic group. Prospect of the use of certain antimicrobial preparations against pathogenic strains is obvious. These AMP can be applied for long term use against different etiology antibiotic resistant pathogens for prevention or treatment of infectional diseases as an alternative to antibiotics.Keywords: antimicrobial biopreparation, endemic lactic acid bacteria, intra-species diversity, multidrug resistance of pathogens
Procedia PDF Downloads 3101473 Epigenetic Reprogramming of Aging: Reversing the Clock for Regenerative Medicine
Authors: Mohammad Ahmad Ahmad Odah
Abstract:
Aging is a complex biological process characterized by the progressive decline of physiological functions and increased vulnerability to age-related diseases. Epigenetic changes, particularly DNA methylation alterations, play a critical role in the aging process by influencing gene expression and genomic stability. This study explores the potential of epigenetic reprogramming as a strategy to reverse aging phenotypes in human fibroblasts. Using CRISPR-Cas9 gene editing and small molecule inhibitors targeting DNA methylation and histone acetylation, we successfully induced significant changes in DNA methylation and gene expression profiles. Our results demonstrate a global reduction in DNA methylation levels and the identification of differentially methylated regions (DMRs) associated with cellular senescence and DNA repair. Additionally, treated fibroblasts exhibited enhanced proliferative capacity, reduced cellular senescence, and improved differentiation potential. These findings suggest that epigenetic reprogramming could be a promising approach for regenerative medicine, offering potential therapeutic strategies to counteract age-related decline and extend healthy lifespan.Keywords: epigenetic reprogramming, aging, regenerative medicine, DNA methylation, cellular rejuvenation, CRISPR-Cas9, senescence
Procedia PDF Downloads 361472 Chelating Effect of Black Tea Extract Compared to Citric Acid in the Process of the Oxidation of Sunflower, Canola, Olive, and Tallow Oils
Authors: Yousef Naserzadeh, Niloufar Mahmoudi
Abstract:
Oxidation resistance is one of the important parameters in maintaining the quality of olive oil during its storage. Ensuring the stability of the quality of olive oil is one of the important concerns of the producers and consumers. Prooxidants such as iron and copper accelerate the oxidation reaction, and also anti-oxidants and chelating compounds delay it. In this study, chelating effect of tea extract which contains significant amounts of tannic acid is investigated in comparison with citric acid. To do it, 0.1 ppm copper was added to these four kinds of oil, sunflower, olive, canola, and tallow, and then chelating effect of citric acid (0.01%), tannic acid (0.01%) and tea extract (0.1%) were measured by adding to this composition. To this end, the resistance time of the oils against oxidation was measured at 120 °C and an air flow of 20 liters per hour. And the value of peroxide was measured by oven test in six periods of 24 hours at 105 °C. The results showed that citric acid, tannic acid and tea extract had chelating property and increased the resistance time of the studied oils. As a result, considering chelating property and increasing resistance of oil, tannic acid showed better effect than tea extract and tea extract had better effect than citric acid.Keywords: tannic acid, chelate, edible oils, black tea extract, TBHQ
Procedia PDF Downloads 2031471 Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation
Authors: Amarjyoti Das Mahapatra, Umesh Kumar, Bhaskar Datta
Abstract:
A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme.Keywords: pseudo peptide, pharmacophore, sulfonyltriuret, trypsin
Procedia PDF Downloads 1671470 A Review on Higher-Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method, Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper, we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions, including Burgers equation, spline functions, and B-spline functions, are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided, and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.Keywords: Burgers’ equation, Septic B-spline, modified cubic B-spline differential quadrature method, exponential cubic B-spline technique, B-spline Galerkin method, quintic B-spline Galerkin method
Procedia PDF Downloads 1261469 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement
Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen
Abstract:
Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening
Procedia PDF Downloads 1141468 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method
Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García
Abstract:
In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.Keywords: ZnO QDs, sol gel, functionalization
Procedia PDF Downloads 4331467 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth
Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong
Abstract:
PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth
Procedia PDF Downloads 1421466 Interaction Effects of Vitamin D Supplementation and Aerobic Exercises on Balance and Physical Performance in Children with Down Syndrome
Authors: Mohamed A. Eid, Sobhy M. Aly, Marwa M. Ibrahim, Nadia L. Radwan
Abstract:
To investigate the interaction effects of vitamin D supplementation combined with aerobic exercises (AE) and conventional physical therapy program (CPTP) on balance and physical performance in children with Down syndrome (DS).Methods: A randomized controlled trial was conducted for 38 children with DS, with ages ranging from 8 to 12 years. They were divided randomly to two groups. The control group (n=19) received the CPTP, while the study group (n=19) received the CPTP, AE, and vitamin D in the form of an oral daily dose of vitamin D3 400 IU (Cholecalciferol). Evaluation of balance by using the Biodex Stability System and physical performance by using the six-minute walk test (6MWT)was performed before and after 12 weeks of the treatment program. Findings: All groups showed a significant improvement in balance and physical performance after treatment (p < 0.05). The study group showed a significant improvement in balance and physical performancecompared with that of the control group (p < 0.05). Conclusion: Vitamin D supplementation combined with AE and CPTP could improve balance and physical performance in children with DS. Therefore, vitamin D and AEshould be considered as adjunctive to the rehabilitation program of these children.Keywords: aerobic exercises, balance, down syndrome, physical performance, vitamin D
Procedia PDF Downloads 232