Search results for: taste machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3112

Search results for: taste machine

1192 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling

Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed

Abstract:

Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.

Keywords: machine learning, pattern recognition, facial pose classification, time series

Procedia PDF Downloads 350
1191 The Effect of Dynamic Eccentricity on the Stator Current Spectrum of 550 kW Induction Motor

Authors: Saleh Elawgali

Abstract:

In order to present the effect of the dynamic eccentricity on the stator currents of squirrel cage induction machines, the current spectrums of a 550 kW induction motor was calculated for the cases of full symmetry and dynamic eccentricity. The calculations presented in this paper are based on the Poly-Harmonic Model accounting for static and dynamic eccentricity, stator and rotor slotting, parallel branches as well as cage asymmetry. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums for full symmetry and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one.

Keywords: current spectrum, dynamic eccentricity, harmonics, Induction machine, slot harmonic zone.

Procedia PDF Downloads 399
1190 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants

Authors: Ramanpreet Kaur, Upasana Sharma

Abstract:

The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.

Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique

Procedia PDF Downloads 103
1189 Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan

Authors: Abida Mariam, Anwaar Ahmed, Asif Ahmad, Muhammad Sheeraz Ahmad, Muhammad Akram Khan, Muhammad Mazahir

Abstract:

The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health.

Keywords: characterization, extra virgin olive oil, oil yield, fatty acids

Procedia PDF Downloads 97
1188 The Pomade for Treatment of Bovine Papilomavirus-Induced Warts in Teats

Authors: Mehmet Kale, Ramazan Sencan, Sibel Yavru, Ahmet Ak, Nuri Mamak, Sibel Hasırcıoglu, Mesih Kocamuftuoglu, Yakup Yıldırım, Hasbi Sait Saltık

Abstract:

Bovine Papilloma Virus (BPV)-induced warts can cause mastitis, teat blindness, reduction of milk yield, udder deformities, and a difficulty in getting the teats into the milking machine. Especially, surgical operations cannot be performed in BPV-induced teat warts because of the increased sensitivity of the breast region and small-sized papillomas. Thus, there is a need to find new topical treatment methods. We have developed a pomade for treatment of BPV in cattle. The pomade is consists of lanoline, snakeskin (two special kind of snake), alcohol, vaseline, and ether. Firstly, we determined 46 cattle with teat warts. In the study, BPV antigen was detected in 28 cattle blood samples (61%) by ELISA. The pomade was applied to all BPV infected animals. The regression and recovery of warts were 100% in all animals. We advised using the pomade for treatment of BPV-induced warts in teats.

Keywords: bovine papilloma virus, pomade, teat, udder

Procedia PDF Downloads 224
1187 Investigating the Factors Affecting on One Time Passwords Technology Acceptance: A Case Study in Banking Environment

Authors: Sajad Shokohuyar, Mahsa Zomorrodi Anbaji, Saghar Pouyan Shad

Abstract:

According to fast technology growth, modern banking tries to decrease going to banks’ branches and increase customers’ consent. One of the problems which banks face is securing customer’s password. The banks’ solution is one time password creation system. In this research by adapting from acceptance of technology model theory, assesses factors that are effective on banking in Iran especially in using one time password machine by one of the private banks of Iran customers. The statistical population is all of this bank’s customers who use electronic banking service and one time password technology and the questionnaires were distributed among members of statistical population in 5 selected groups of north, south, center, east and west of Tehran. Findings show that confidential preservation, education, ease of utilization and advertising and informing has positive relations and distinct hardware and age has negative relations.

Keywords: security, electronic banking, one time password, information technology

Procedia PDF Downloads 453
1186 Voice Commands Recognition of Mentor Robot in Noisy Environment Using HTK

Authors: Khenfer-Koummich Fatma, Hendel Fatiha, Mesbahi Larbi

Abstract:

this paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a man-machine interface with a voice recognition system that allows the operator to tele-operate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands spoken in two languages: French and Arabic. The recognition rate obtained is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equal to 30 db, the Arabic speech recognition rate is 69% and 80% for French speech recognition rate. This can be explained by the ability of phonetic context of each speech when the noise is added.

Keywords: voice command, HMM, TIMIT, noise, HTK, Arabic, speech recognition

Procedia PDF Downloads 382
1185 Evaluation of Fatigue Crack Growth Rate in Weldments

Authors: Pavel Zlabek, Vaclav Mentl

Abstract:

The fatigue crack growth rate evaluation is a basic experimental characteristic when assessment o f the remaining lifetime is needed. Within the repair welding technology project, the crack growth rate at cyclic loading was measured in base and weld metals and in the situation when cracks were initiated in base metal and grew into the weld metal through heat-affected zone and back to the base metal. Two welding technologies were applied and specimens in as-welded state and after heat treatment were tested. Fatigue crack growth rate measurement was performed on CrMoV pressure vessel steel and the tests were performed at room temperature. The crack growth rate was measured on CCT test specimens (see figure) for both the base and weld metals and also in the case of crack subsequent transition through all the weld zones. A 500 kN MTS controlled electro-hydraulic testing machine and Model 632.13C-20 MTS extensometer were used to perform the tests.

Keywords: cracks, fatigue, steels, weldments

Procedia PDF Downloads 522
1184 Literary Translation Human vs Machine: An Essay about Online Translation

Authors: F. L. Bernardo, R. A. S. Zacarias

Abstract:

The ways to translate are manifold since textual genres undergoing translations are diverse. In this essay, our goal is to give special attention to the literary genre and to the online translation tool Google Translate (GT), widely used either by nonprofessionals or by scholars, in order to show evidence of the indispensability of human wit in a good translation. Our study has its basis on a literary review of prominent authors, with emphasis on translation categories. Also highlighting the issue of polysemous literary translation, we aim to shed light on the translator’s craft and the fallible nature of online translation. To better illustrate these principles, the methodology consisted on performing a comparative analysis involving the original text Moll Flanders by Daniel Defoe in English to its online translation given by GT and to a translation into Brazilian Portuguese performed by a human. We proceeded to identifying and analyzing the degrees of textual equivalence according to the following categories: volume, levels and order. The results have attested the unsuitability in a translation done by a computer connected to the World Wide Web.

Keywords: Google Translator, human translation, literary translation, Moll Flanders

Procedia PDF Downloads 651
1183 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 70
1182 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm

Procedia PDF Downloads 410
1181 Multipass Scratch Characterization of TiNbVN Thin Coatings Deposited by Magnetron Sputtering

Authors: Hikmet Cicek

Abstract:

Transition metal nitrides are widely used as protective coatings on machine parts and cutting tools to protect the surfaces from abrasion and corrosion for decades. In this study, the ternary TiNbVN thin coatings were produced with closed field unbalanced magnetron sputtering system and their structural, mechanical and fatigue-like (multi-pass scratch test) properties were investigated. Two different substrates (M2 and H13 steels) were used to explore substrates effects. X-Ray diffractometer, scanning electron microscope, and energy dispersive spectroscopy were used for the structural and chemical analysis of the coatings. Nanohardness tests were proceed for mechanical properties. The fatigue-like properties of the coatings obtained from the multi-scratch test under three different cycle passes. The results showed that TiNbVN films have excellent fatigue resistance and the coatings deposited on M2 steel substrate have higher hardness and better fatigue resistance.

Keywords: physical vapor deposition, fatigue, metal nitride, multipass scratch test

Procedia PDF Downloads 209
1180 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 85
1179 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 713
1178 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 186
1177 Fault Tree Analysis (FTA) of CNC Turning Center

Authors: R. B. Patil, B. S. Kothavale, L. Y. Waghmode

Abstract:

Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628.

Keywords: fault tree analysis (FTA), reliability analysis, risk assessment, hazard analysis

Procedia PDF Downloads 414
1176 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset

Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor

Abstract:

The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.

Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques

Procedia PDF Downloads 11
1175 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 81
1174 Mechanical Tension Control of Winding Systems for Paper Webs

Authors: Glaoui Hachemi

Abstract:

In this paper, a scheme based on multi-input multi output Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding system is proposed. Once the uncoupled model of the winding system was obtained, a smooth control function with a threshold was selected to indicate how far away the case was from the sliding surface. nevertheless, this control function depends closely on the higher bound of the uncertainties, which generates overlap. So, this size has to be chosen with broad care to obtain high performances. Usually, the upper bound of uncertainties is difficult to know before motor operation, so, a Fuzzy Sliding Mode controller is investigated to resolve this problem, a simple Fuzzy inference mechanism is used to decrease the chattering phenomenon by simple adjustments. A simulation study is achieved and that the indicate fuzzy sliding mode controllers have great potential for use as an alternative to the conventional sliding mode control.

Keywords: Winding system, induction machine, Mechanical tension, Proportional-integral (PI), sliding mode control, Fuzzy logic

Procedia PDF Downloads 95
1173 Fracture Crack Monitoring Using Digital Image Correlation Technique

Authors: B. G. Patel, A. K. Desai, S. G. Shah

Abstract:

The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.

Keywords: Digital Image Correlation, fibres, self compacting concrete, size effect

Procedia PDF Downloads 389
1172 The Consequences of Vibrations in Machining

Authors: Boughedaoui Rachid, Belaidi Idir, Ouali Mohamed

Abstract:

The formatting by removal of material remains an indispensable means for obtaining different forms of pieces. The objective of this work is to study the influence of parameters of the vibratory regime of the system PTM 'Piece-Tool-Machine, in the case of the machining of the thin pieces on the surface finish. As a first step, an analytical study of essential dynamic models 2D slice will be presented. The stability lobes will be thus obtained. In a second step, a characterization of PTM system will be realized. This system will be instrumented with accelerometric sensors but also a laser vibrometer so as to have the information closer to the cutting area. Dynamometers three components will be used for the analysis of cutting forces. Surface states will be measured and the condition of the cutting edge will be visualized thanks to a binocular microscope coupled to a data acquisition system. This information will allow quantifying the influence of chatter on the dimensional quality of the parts. From lobes stabilities previously determined experimental validation allow for the development a method for detecting of the phenomenon of chatter and so an approach will be proposed.

Keywords: chatter, dynamic, milling, lobe stability

Procedia PDF Downloads 357
1171 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach

Authors: Daniel Benson, Yundan Gong, Hannah Kirk

Abstract:

Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.

Keywords: international aid, geocoding, subnational data, natural language processing, machine learning

Procedia PDF Downloads 78
1170 Financial Reports and Common Ownership: An Analysis of the Mechanisms Common Owners Use to Induce Anti-Competitive Behavior

Authors: Kevin Smith

Abstract:

Publicly traded company in the US are legally obligated to host earnings calls that discuss their most recent financial reports. During these calls, investors are able to ask these companies questions about these financial reports and on the future direction of the company. This paper examines whether common institutional owners use these calls as a way to indirectly signal to companies in their portfolio to not take actions that could hurt the common owner's interests. This paper uses transcripts taken from the earnings calls of the six largest health insurance companies in the US from 2014 to 2019. This data is analyzed using text analysis and sentiment analysis to look for patterns in the statements made by common owners. The analysis found that common owners where more likely to recommend against direct price competition and instead redirect the insurance companies towards more passive actions, like investing in new technologies. This result indicates a mechanism that common owners use to reduce competition in the health insurance market.

Keywords: common ownership, text analysis, sentiment analysis, machine learning

Procedia PDF Downloads 74
1169 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 255
1168 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors

Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi

Abstract:

The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.

Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor

Procedia PDF Downloads 628
1167 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 80
1166 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 88
1165 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
1164 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 127
1163 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455