Search results for: neural style transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5360

Search results for: neural style transfer

3440 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
3439 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 317
3438 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
3437 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
3436 Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods

Authors: Manel Boulakoud, Abdelkader Chouaih, Fodil Hamzaoui

Abstract:

In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound.

Keywords: DFT, ab initio, HOMO-LUMO, organic compounds

Procedia PDF Downloads 535
3435 The Influence of Neighborhood Centers of Tehran Municipality in Living Style of the Residents of Each Neighborhood

Authors: Fahimeh Rafiezade, Fatemeh Kakoyi Dinaki, Maryam Soufi

Abstract:

This research studies and identifies the important elements of the living style of the residents of one of the neighborhoods of Tehran. The study will also study the role, the degree, and extent of the influence of neighborhood trainings in the lives of these people. Saraymahaleh is one of the centers established by Tehran municipality in various neighborhoods of Tehran in order to provide educational, cultural, etc. services. We carried out our study according to demography, field study, observation, 30 interviews, and 2 focus group discussions (FGD) at Sahebalzaman neighborhood in district 18 of Tehran municipality. We interpreted our observations and interviews with the neighborhoods’ supervisors and city council assistants (Shorayar), supervisor of Saraymahaleh and people who refer to them. We used this information to study the citizens’ lifestyle, values, behavioral, motivational, and attitude preferences in their religious and environmental orientations, cultural consumptions, and spare times, and the influence of Saraymahaleh on these aspects according to specific economic, cultural, and ethnic characteristics. Sahebalzaman neighborhood is considered an underprivileged district in terms of economy, high illiteracy, and low but structured migration of young people. The interviews we made helped us classify the people referring to Saraymahaleh based on their demographic attributes and attitudes and the reason of referring and finally the influence of the rendered services on their lifestyles. The studies indicate that women made the most part of people referring to Saraymahaleh Sahebalzaman. They were mostly young, in their midlives, and generally unemployed without a specialized skill. People referred to Saraymahaleh Sahebalzaman mostly to receive services or for entertainment and recreation purposes, i.e. they did not take part actively. In addition to creating welfare and cultural facilities, Saraymahaleh increases the level of skill training, empowerment, innovation and creativity, and issues skill certificates and documents that helps to increase job and income producing opportunities for the neighborhood residents, improve the quality of their live, and increase their hope for life.

Keywords: lifestyle, living in neighborhood, Saraymahaleh, Tehran municipality, urban life, demography

Procedia PDF Downloads 377
3434 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 215
3433 The Acquisition of Spanish L4 by Learners with Croatian L1, English L2 and Italian L3

Authors: Barbara Peric

Abstract:

The study of acquiring a third and additional language has garnered significant focus within second language acquisition (SLA) research. Initially, it was commonly viewed as merely an extension of second language acquisition (SLA). However, in the last two decades, numerous researchers have emphasized the need to recognize the unique characteristics of third language acquisition (TLA). This recognition is crucial for understanding the intricate cognitive processes that arise from the interaction of more than two linguistic systems in the learner's mind. This study investigates cross-linguistic influences in the acquisition of Spanish as a fourth language by students who have Croatian as a first language (L1). English as a second language (L2), and Italian as a third language (L3). Observational data suggests that influence or transfer of linguistic elements can arise not only from one's native language (L1) but also from non-native languages. This implies that, for individuals proficient in multiple languages, the native language doesn't consistently hold a superior position. Instead, it should be examined alongside other potential sources of linguistic transfer. Earlier studies have demonstrated that high proficiency in a second language can significantly impact cross-linguistic influences when acquiring a third and additional language. Among the extensively examined factors, the typological relationship stands out as one of the most scrutinized variables. The goal of the present study was to explore whether language typology and formal similarity or proficiency in the second language had a more significant impact on L4 acquisition. Participants in this study were third-year undergraduate students at Rochester Institute of Technology’s subsidiary in Croatia (RIT Croatia). All the participants had exclusively Croatian as L1, English as L2, Italian as L3 and were learning Spanish as L4 at the time of the study. All the participants had a high level of proficiency in English and low level of proficiency in Italian. Based on the error analysis the findings indicate that for some types of lexical errors such as coinage, language typology had a more significant impact and Italian language was the preferred source of transfer despite the law proficiency in that language. For some other types of lexical errors, such as calques, second language proficiency had a more significant impact, and English language was the preferred source of transfer. On the other hand, Croatian, Italian, and Spanish are more similar in the area of morphology due to higher degree of inflection compared to English and the strongest influence of the Croatian language was precisely in the area of morphology. The results emphasize the need to consider linguistic resemblances between the native language (L1) and the third and additional language as well as the learners' proficiency in the second language when developing successful teaching strategies for acquiring the third and additional language. These conclusions add to the expanding knowledge in the realm of Second Language Acquisition (SLA) and offer practical insights for language educators aiming to enhance the effectiveness of learning experiences in acquiring a third and additional language.

Keywords: third and additional language acquisition, cross-linguistic influences, language proficiency, language typology

Procedia PDF Downloads 55
3432 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 241
3431 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 264
3430 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 161
3429 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data

Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda

Abstract:

Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.

Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation

Procedia PDF Downloads 299
3428 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
3427 Synthesis, Inhibitory Activity, and Molecular Modelling of 2-Hydroxy-3-Oxo-3-Phenylpropionate Derivatives as HIV-1-Integrase Inhibitors

Authors: O. J. Jesumoroti, Faridoon, R. Klein, K. A. Iobb, D. Mnkadhla, H. C. Hoppe, P. T. Kaye

Abstract:

The 1, 3-aryl diketo acids (DKA) based agents represent an important class of HIV integrase (IN) strand transfer inhibitors. In other to study the chelating role of the divalent metal ion in the inhibition of IN strand transfer, we designed and synthesized a series of 2-hydroxy-3-oxo-3-phenyl propionate derivatives with the notion that such compounds could interact with the divalent ion in the active site of IN. The synthetic sequence to the desired compounds involves the concept of Doebner knoevenagel condensation, Fischer esterification and ketohydroxylation using neuclophilic re-oxidant; compounds were characterized by their IR, IHNMR, 13CNMR, HRMS spectroscopic data and melting point determination. Also, molecular docking was employed in this study and it was revealed that there is interaction with the active site of the enzyme. However, there is disparity in the corresponding anti-HIV activity determined by the experimental bioassay. These compounds lack potency at low micromolar concentration when compared to the results of the docking studies. Nevertheless, the results of the study suggest modification of the aryl ring with one or two hydroxyl groups to improve the inhibitory activity.

Keywords: anti-HIV-1 integrase, ketohydroxylation, molecular docking, propionate derivatives

Procedia PDF Downloads 194
3426 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks

Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu

Abstract:

Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.

Keywords: pin-fin, heat sinks, simulations, turbulent flow

Procedia PDF Downloads 315
3425 Knowledge Management as Tool for Environmental Management System Implementation in Higher Education Institutions

Authors: Natalia Marulanda Grisales

Abstract:

The most significant changes in the characteristics of consumers have contributed to the development and adoption of methodologies and tools that enable organizations to be more competitive in the marketplace. One of these methodologies is the integration of Knowledge Management (KM) phases and Environmental Management Systems (EMS). This integration allows companies to manage and share the required knowledge for EMS adoption, from the place where it is generated to the place where it is going to be exploited. The aim of this paper is to identify the relationship between KM phases as a tool for the adoption of EMS in HEI. The methodology has a descriptive scope and a qualitative approach. It is based on a case study and a review of the literature about KM and EMS. We conducted 266 surveys to students, professors and staff at Minuto de Dios University (Colombia). Data derived from the study indicate that if a HEI wants to achieve an adequate knowledge acquisition and knowledge transfer, it must have clear goals for implementing an EMS. Also, HEI should create empowerment and training spaces for students, professors and staff. In the case study, HEI must generate alternatives that enhance spaces of knowledge appropriation. It was found that 85% of respondents have not received any training from HEI about EMS. 88% of respondents believe that the actions taken by the university are not efficient to knowledge transfer in order to develop an EMS.

Keywords: environmental management systems, higher education institutions, knowledge management, training

Procedia PDF Downloads 372
3424 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
3423 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 454
3422 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater

Authors: Vimal Kumar Chouksey, S. P. Sharma

Abstract:

This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.

Keywords: plane collector, solar air heater, solar energy, wire screen packed bed

Procedia PDF Downloads 236
3421 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
3420 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
3419 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 224
3418 Glenoid Osteotomy with Various Tendon Transfers for Brachial Plexus Birth Palsy: Clinical Outcomes

Authors: Ramin Zargarbashi, Hamid Rabie, Behnam Panjavi, Hooman Kamran, Seyedarad Mosalamiaghili, Zohre Erfani, Seyed Peyman Mirghaderi, Maryam Salimi

Abstract:

Background: Posterior shoulder dislocation is one of the disabling complications of brachial plexus birth injury (BPBI), and various treatment options, including capsule and surrounding muscles release for open reduction, humeral derotational osteotomy, and tendon transfers, have been recommended to manage it. In the present study, we aimed to determine the clinical outcome of open reduction with soft tissue release, tendon transfer, and glenoid osteotomy inpatients with BPBI and posterior shoulder dislocation or subluxation. Methods: From 2018 to 2020, 33 patients that underwent open reduction, glenoid osteotomy, and tendon transfer were included. The glenohumeral deformity was classified according to the Waters radiographic classification. Functional assessment was performed using the Mallet grading system before and at least two years after the surgery. Results: The patients were monitored for 26.88± 5.47 months. Their average age was 27.5±14 months. Significant improvement was seen in the overall Mallet score (from 13.5 to 18.91 points) and its segments, including hand to mouth, hand to the neck, global abduction, global external rotation, abduction degree, and external rotation degree. Hand-to-back score and the presence of trumpet sign were significantly decreased in the post-operation phase (all p values<0.001). The above-mentioned variables significantly changed for both infantile and non-infantile dislocations. Conclusion: Our study demonstrated that open reduction along with glenoid osteotomy improves retroversion, and muscle strengthening with different muscle transfers is an effective technique for BPBI.

Keywords: birth injuries, nerve injury, brachial plexus birth palsy, Erb palsy, tendon transfer

Procedia PDF Downloads 96
3417 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 223
3416 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
3415 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method

Authors: Marzieh Joda, Narges Fallah, Neda Afsham

Abstract:

Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.

Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation

Procedia PDF Downloads 221
3414 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 150
3413 The Effect of Information Technology on the Quality of Accounting Information

Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Hamid Golnari

Abstract:

This study aimed to investigate the impact of information technology on the quality of accounting information was made in 2014. A survey of 425 executives of listed companies in Tehran Stock Exchange, using the Cochran formula simple random sampling method, 84 managers of these companies as the sample size was considered. Methods of data collection based on questionnaire information technology some of the questions of the impact of information technology was standardized questionnaires and the questions were designed according to existing components. After the distribution and collection of questionnaires, data analysis and hypothesis testing using structural equation modeling Smart PLS2 and software measurement model and the structure was conducted in two parts. In the first part of the questionnaire technical characteristics including reliability, validity, convergent and divergent validity for PLS has been checked and in the second part, application no significant coefficients were used to examine the research hypotheses. The results showed that IT and its dimensions (timeliness, relevance, accuracy, adequacy, and the actual transfer rate) affect the quality of accounting information of listed companies in Tehran Stock Exchange influence.

Keywords: information technology, information quality, accounting, transfer speed

Procedia PDF Downloads 277
3412 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
3411 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks

Procedia PDF Downloads 140