Search results for: lid driven cavity
79 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38678 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 23477 The Governance of Net-Zero Emission Urban Bus Transitions in the United Kingdom: Insight from a Transition Visioning Stakeholder Workshop
Authors: Iraklis Argyriou
Abstract:
The transition to net-zero emission urban bus (ZEB) systems is receiving increased attention in research and policymaking throughout the globe. Most studies in this area tend to address techno-economic aspects and the perspectives of a narrow group of stakeholders, while they largely overlook analysis of current bus system dynamics. This offers limited insight into the types of ZEB governance challenges and opportunities that are encountered in real-world contexts, as well as into some of the immediate actions that need to be taken to set off the transition over the longer term. This research offers a multi-stakeholder perspective into both the technical and non-technical factors that influence ZEB transitions within a particular context, the UK. It does so by drawing from a recent transition visioning stakeholder workshop (June 2023) with key public, private and civic actors of the urban bus transportation system. Using NVivo software to qualitatively analyze the workshop discussions, the research examines the key technological and funding aspects, as well as the short-term actions (over the next five years), that need to be addressed for supporting the ZEB transition in UK cities. It finds that ZEB technology has reached a mature stage (i.e., high efficiency of batteries, motors and inverters), but important improvements can be pursued through greater control and integration of ZEB technological components and systems. In this regard, telemetry, predictive maintenance and adaptive control strategies pertinent to the performance and operation of ZEB vehicles have a key role to play in the techno-economic advancement of the transition. Yet, more pressing gaps were identified in the current ZEB funding regime. Whereas the UK central government supports greater ZEB adoption through a series of grants and subsidies, the scale of the funding and its fragmented nature do not match the needs for a UK-wide transition. Funding devolution arrangements (i.e., stable funding settlement deals between the central government and the devolved administrations/local authorities), as well as locally-driven schemes (i.e., congestion charging/workplace parking levy), could then enhance the financial prospects of the transition. As for short-term action, three areas were identified as critical: (1) the creation of whole value chains around the supply, use and recycling of ZEB components; (2) the ZEB retrofitting of existing fleets; and (3) integrated transportation that prioritizes buses as a first-choice, convenient and reliable mode while it simultaneously reduces car dependency in urban areas. Taken together, the findings point to the need for place-based transition approaches that create a viable techno-economic ecosystem for ZEB development but at the same time adopt a broader governance perspective beyond a ‘net-zero’ and ‘bus sectoral’ focus. As such, multi-actor collaborations and the coordination of wider resources and agency, both vertically across institutional scales and horizontally across transport, energy and urban planning, become fundamental features of comprehensive ZEB responses. The lessons from the UK case can inform a broader body of empirical contextual knowledge of ZEB transition governance within domestic political economies of public transportation.Keywords: net-zero emission transition, stakeholders, transition governance, UK, urban bus transportation
Procedia PDF Downloads 7576 An Alternative to Problem-Based Learning in a Post-Graduate Healthcare Professional Programme
Authors: Brogan Guest, Amy Donaldson-Perrott
Abstract:
The Master’s of Physician Associate Studies (MPAS) programme at St George’s, University of London (SGUL), is an intensive two-year course that trains students to become physician associates (PAs). PAs are generalized healthcare providers who work in primary and secondary care across the UK. PA programmes face the difficult task of preparing students to become safe medical providers in two short years. Our goal is to teach students to develop clinical reasoning early on in their studies and historically, this has been done predominantly though problem-based learning (PBL). We have had an increase concern about student engagement in PBL and difficulty recruiting facilitators to maintain the low student to facilitator ratio required in PBL. To address this issue, we created ‘Clinical Application of Anatomy and Physiology (CAAP)’. These peer-led, interactive, problem-based, small group sessions were designed to facilitate students’ clinical reasoning skills. The sessions were designed using the concept of Team-Based Learning (TBL). Students were divided into small groups and each completed a pre-session quiz consisting of difficult questions devised to assess students’ application of medical knowledge. The quiz was completed in small groups and they were not permitted access of external resources. After the quiz, students worked through a series of openended, clinical tasks using all available resources. They worked at their own pace and the session was peer-led, rather than facilitator-driven. For a group of 35 students, there were two facilitators who observed the sessions. The sessions utilised an infinite space whiteboard software. Each group member was encouraged to actively participate and work together to complete the 15-20 tasks. The session ran for 2 hours and concluded with a post-session quiz, identical to the pre-session quiz. We obtained subjective feedback from students on their experience with CAAP and evaluated the objective benefit of the sessions through the quiz results. Qualitative feedback from students was generally positive with students feeling the sessions increased engagement, clinical understanding, and confidence. They found the small group aspect beneficial and the technology easy to use and intuitive. They also liked the benefit of building a resource for their future revision, something unique to CAAP compared to PBL, which out students participate in weekly. Preliminary quiz results showed improvement from pre- and post- session; however, further statistical analysis will occur once all sessions are complete (final session to run December 2022) to determine significance. As a post-graduate healthcare professional programme, we have a strong focus on self-directed learning. Whilst PBL has been a mainstay in our curriculum since its inception, there are limitations and concerns about its future in view of student engagement and facilitator availability. Whilst CAAP is not TBL, it draws on the benefits of peer-led, small group work with pre- and post- team-based quizzes. The pilot of these sessions has shown that students are engaged by CAAP, and they can make significant progress in clinical reasoning in a short amount of time. This can be achieved with a high student to facilitator ratio.Keywords: problem based learning, team based learning, active learning, peer-to-peer teaching, engagement
Procedia PDF Downloads 8075 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators
Authors: N. Naz, A. D. Domenico, M. N. Huda
Abstract:
Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator
Procedia PDF Downloads 9074 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology
Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais
Abstract:
The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology
Procedia PDF Downloads 31273 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs
Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).Keywords: woody, vegetation, repeated, photographs
Procedia PDF Downloads 8972 Cultural Cognition and Voting: Understanding Values and Perceived Risks in the Colombian Population
Authors: Andrea N. Alarcon, Julian D. Castro, Gloria C. Rojas, Paola A. Vaca, Santiago Ortiz, Gustavo Martinez, Pablo D. Lemoine
Abstract:
Recently, electoral results across many countries have shown to be inconsistent with rational decision theory, which states that individuals make decisions based on maximizing benefits and reducing risks. An alternative explanation has emerged: Fear and rage-driven vote have been proved to be highly effective for political persuasion and mobilization. This phenomenon has been evident in the 2016 elections in the United States, 2006 elections in Mexico, 1998 elections in Venezuela, and 2004 elections in Bolivia. In Colombia, it has occurred recently in the 2016 plebiscite for peace and 2018 presidential elections. The aim of this study is to explain this phenomenon using cultural cognition theory, referring to the psychological predisposition individuals have to believe that its own and its peer´s behavior is correct and, therefore, beneficial to the entire society. Cultural cognition refers to the tendency of individuals to fit perceived risks, and factual beliefs into group shared values; the Cultural Cognition Worldview Scales (CCWS) measures cultural perceptions through two different dimensions: Individualism-communitarianism and hierarchy-egalitarianism. The former refers to attitudes towards social dominance based on conspicuous and static characteristics (sex, ethnicity or social class), while the latter refers to attitudes towards a social ordering in which it is expected from individuals to guarantee their own wellbeing without society´s or government´s intervention. A probabilistic national sample was obtained from different polls from the consulting and public opinion company Centro Nacional de Consultoría. Sociodemographic data was obtained along with CCWS scores, a subjective measure of left-right ideological placement and vote intention for 2019 Mayor´s elections were also included in the questionnaires. Finally, the question “In your opinion, what is the greatest risk Colombia is facing right now?” was included to identify perceived risk in the population. Preliminary results show that Colombians are highly distributed among hierarchical communitarians and egalitarian individualists (30.9% and 31.7%, respectively), and to a less extent among hierarchical individualists and egalitarian communitarians (19% and 18.4%, respectively). Males tended to be more hierarchical (p < .000) and communitarian (p=.009) than females. ANOVA´s revealed statistically significant differences between groups (quadrants) for the level of schooling, left-right ideological orientation, and stratum (p < .000 for all), and proportion differences revealed statistically significant differences for groups of age (p < .001). Differences and distributions for vote intention and perceived risks are still being processed and results are yet to be analyzed. Results show that Colombians are differentially distributed among quadrants in regard to sociodemographic data and left-right ideological orientation. These preliminary results indicate that this study may shed some light on why Colombians vote the way they do, and future qualitative data will show the fears emerging from the identified values in the CCWS and the relation this has with vote intention.Keywords: communitarianism, cultural cognition, egalitarianism, hierarchy, individualism, perceived risks
Procedia PDF Downloads 14871 Strengths Profiling: An Alternative Approach to Assessing Character Strengths Based on Personal Construct Psychology
Authors: Sam J. Cooley, Mary L. Quinton, Benjamin J. Parry, Mark J. G. Holland, Richard J. Whiting, Jennifer Cumming
Abstract:
Practitioners draw attention to people’s character strengths to promote empowerment and well-being. This paper explores the possibility that existing approaches for assessing character strengths (e.g., the Values in Action survey; VIA-IS) could be even more autonomy supportive and empowering when combined with strengths profiling, an ideographic tool informed by personal construct theory (PCT). A PCT approach ensures that: (1) knowledge is co-created (i.e., the practitioner is not seen as the ‘expert’ who leads the process); (2) individuals are not required to ‘fit’ within a prescribed list of characteristics; and (3) individuals are free to use their own terminology and interpretations. A combined Strengths Profiling and VIA approach was used in a sample of homeless youth (aged 16-25) who are commonly perceived as ‘hard-to-engage’ through traditional forms of assessment. Strengths Profiling was completed face-to-face in small groups. Participants (N = 116) began by listing a variety of personally meaningful characteristics. Participants gave each characteristic a score out of ten for how important it was to them (1 = not so important; 10 = very important), their ideal competency, and their current competency (1 = poor; 10 = excellent). A discrepancy score was calculated for each characteristic (discrepancy score = ideal score - current score x importance), whereby a lower discrepancy score indicated greater satisfaction. Strengths Profiling was used at the beginning and end of a 10-week positive youth development programme. Experiences were captured through video diary room entries made by participants and through reflective notes taken by the facilitators. Participants were also asked to complete a pre-and post-programme questionnaire, measuring perceptions of well-being, self-worth, and resilience. All of the young people who attended the strengths profiling session agreed to complete a profile, and the majority became highly engaged in the process. Strengths profiling was found to be an autonomy supportive and empowering experience, with each participant identifying an average of 10 character strengths (M = 10.27, SD = 3.23). In total, 215 different character strengths were identified, each with varying terms and definitions used, which differed greatly between participants and demonstrated the value in soliciting personal constructs. Using the participants’ definitions, 98% of characteristics were categorized deductively into the VIA framework. Bravery, perseverance, and hope were the character strengths that featured most, whilst temperance and courage received the highest discrepancy scores. Discrepancy scores were negatively correlated with well-being, self-worth, and resilience, and meaningful improvements were recorded following the intervention. These findings support the use of strengths profiling as a theoretically-driven and novel way to engage disadvantaged youth in identifying and monitoring character strengths. When young people are given the freedom to express their own characteristics, the resulting terminologies extend beyond the language used in existing frameworks. This added freedom and control over the process of strengths identification encouraged youth to take ownership over their profiles and apply their strengths. In addition, the ability to transform characteristics post hoc into the VIA framework means that strengths profiling can be used to explore aggregated/nomothetic hypotheses, whilst still benefiting from its ideographic roots.Keywords: ideographic, nomothetic, positive youth development, VIA-IS, assessment, homeless youth
Procedia PDF Downloads 20170 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows
Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld
Abstract:
Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV
Procedia PDF Downloads 8669 Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry
Authors: Alejandra Castillo-Arias, Santiago Amézquita-Murcia, Golber Carvajal-Lavi, Carlos M. Zuluaga-Domínguez
Abstract:
The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods.Keywords: consumer preferences, modified starch, physicochemical properties, puff pastry
Procedia PDF Downloads 2668 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 9267 Drones, Rebels and Bombs: Explaining the Role of Private Security and Expertise in a Post-piratical Indian Ocean
Authors: Jessica Kate Simonds
Abstract:
The last successful hijacking perpetrated by Somali pirates in 2012 represented a critical turning point for the identity and brand of Indian Ocean (IO) insecurity, coined in this paper as the era of the post-piratical. This paper explores the broadening of the PMSC business model to account and contribute to the design of a new IO security environment that prioritises foreign and insurgency drone activity and Houthi rebel operations as the main threat to merchant shipping in the post-2012 era. This study is situated within a longer history of analysing maritime insecurity and also contributes a bespoke conceptual framework that understands the sea as a space that is produced and reproduced relative to existing and emerging threats to merchant shipping based on bespoke models of information sharing and intelligence acquisition. This paper also makes a prominent empirical contribution by drawing on a post-positivist methodology, data drawn from original semi-structured interviews with senior maritime insurers and active merchant seafarers that is triangulated with industry-produced guidance such as the BMP series as primary data sources. Each set is analysed through qualitative discourse and content analysis and supported by the quantitative data sets provided by the IMB Piracy Reporting center and intelligence networks. This analysis reveals that mechanisms such as the IGP&I Maritime Security Committee and intelligence divisions of PMSC’s have driven the exchanges of knowledge between land and sea and thus the reproduction of the maritime security environment through new regulations and guidance to account dones, rebels and bombs as the key challenges in the IO, beyond piracy. A contribution of this paper is the argument that experts who may not be in the highest-profile jobs are the architects of maritime insecurity based on their detailed knowledge and connections to vessels in transit. This paper shares the original insights of those who have served in critical decision making spaces to demonstrate that the development and refinement of industry produced deterrence guidance that has been accredited to the mitigation of piracy, have shaped new editions such as BMP 5 that now serve to frame a new security environment that prioritises the mitigation of risks from drones and WBEID’s from both state and insurgency risk groups. By highlighting the experiences and perspectives of key players on both land and at sea, the key finding of this paper is outlining that as pirates experienced a financial boom by profiteering from their bespoke business model during the peak of successful hijackings, the private security market encountered a similar level of financial success and guaranteed risk environment in which to prospect business. Thus, the reproduction of the Indian Ocean as a maritime security environment reflects a new found purpose for PMSC’s as part of the broader conglomerate of maritime insurers, regulators, shipowners and managers who continue to redirect the security consciousness and IO brand of insecurity.Keywords: maritime security, private security, risk intelligence, political geography, international relations, political economy, maritime law, security studies
Procedia PDF Downloads 18466 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 10465 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 19364 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 2063 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base
Authors: Joanna Wielochowska, Aneta Wielochowska
Abstract:
Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia
Procedia PDF Downloads 12462 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 9461 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure
Authors: Sara Saboonian, Pierre Filion
Abstract:
The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.Keywords: ecosystem services, green infrastructure, intensification, planning
Procedia PDF Downloads 35560 Librarian Liaisons: Facilitating Multi-Disciplinary Research for Academic Advancement
Authors: Tracey Woods
Abstract:
In the ever-evolving landscape of academia, the traditional role of the librarian has undergone a remarkable transformation. Once considered as custodians of books and gatekeepers of information, librarians have the potential to take on the vital role of facilitators of cross and inter-disciplinary projects. This shift is driven by the growing recognition of the value of interdisciplinary collaboration in addressing complex research questions in pursuit of novel solutions to real-world problems. This paper shall explore the potential of the academic librarian’s role in facilitating innovative, multi-disciplinary projects, both recognising and validating the vital role that the librarian plays in a somewhat underplayed profession. Academic libraries support teaching, the strengthening of knowledge discourse, and, potentially, the development of innovative practices. As the role of the library gradually morphs from a quiet repository of books to a community-based information hub, a potential opportunity arises. The academic librarian’s role is to build knowledge across a wide span of topics, from the advancement of AI to subject-specific information, and, whilst librarians are generally not offered the research opportunities and funding that the traditional academic disciplines enjoy, they are often invited to help build research in support of the academic. This identifies that one of the primary skills of any 21st-century librarian must be the ability to collaborate and facilitate multi-disciplinary projects. In universities seeking to develop research diversity and academic performance, there is an increasing awareness of the need for collaboration between faculties to enable novel directions and advancements. This idea has been documented and discussed by several researchers; however, there is not a great deal of literature available from recent studies. Having a team based in the library that is adept at creating effective collaborative partnerships is valuable for any academic institution. This paper outlines the development of such a project, initiated within and around an identified library-specific need: the replication of fragile special collections for object-based learning. The research was developed as a multi-disciplinary project involving the faculties of engineering (digital twins lab), architecture, design, and education. Centred around methods for developing a fragile archive into a series of tactile objects furthers knowledge and understanding in both the role of the library as a facilitator of projects, chairing and supporting, alongside contributing to the research process and innovating ideas through the bank of knowledge found amongst the staff and their liaising capabilities. This paper shall present the method of project development from the initiation of ideas to the development of prototypes and dissemination of the objects to teaching departments for analysis. The exact replication of artefacts is also balanced with the adaptation and evolutionary speculations initiated by the design team when adapted as a teaching studio method. The dynamic response required from the library to generate and facilitate these multi-disciplinary projects highlights the information expertise and liaison skills that the librarian possesses. As academia embraces this evolution, the potential for groundbreaking discoveries and innovative solutions across disciplines becomes increasingly attainable.Keywords: Liaison librarian, multi-disciplinary collaborations, library innovations, librarian stakeholders
Procedia PDF Downloads 7259 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets
Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe
Abstract:
Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.Keywords: biomedical research, genomics, information systems, software
Procedia PDF Downloads 27058 Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)
Authors: Sarwan Dhir, Suma Basak, Dipika Parajulee
Abstract:
Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9.Keywords: Medicago sativa l. (Alfalfa), agrobacterium tumefaciens, β-glucuronidase, green fluorescent protein, transient gene
Procedia PDF Downloads 1157 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders
Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva
Abstract:
Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.
Procedia PDF Downloads 8056 International Indigenous Employment Empirical Research: A Community-Based Participatory Research Content Analysis
Authors: Melanie Grier, Adam Murry
Abstract:
Objective: Worldwide, Indigenous Peoples experience underemployment and poverty at disproportionately higher rates than non-Indigenous people, despite similar rates of employment seeking. Euro-colonial conquest and genocidal assimilation policies are implicated as perpetuating poverty, which research consistently links to health and wellbeing disparities. Many of the contributors to poverty, such as inadequate income and lack of access to medical care, can be directly or indirectly linked to underemployment. Calls have been made to prioritize Indigenous perspectives in Industrial-Organizational (I/O) psychology research, yet the literature on Indigenous employment remains scarce. What does exist is disciplinarily diverse, topically scattered, and lacking evidence of community-based participatory research (CBPR) practices, a research project approach which prioritizes community leadership, partnership, and betterment and reduces the potential for harm. Due to the harmful colonial legacy of extractive scientific inquiry "on" rather than "with" Indigenous groups, Indigenous leaders and research funding agencies advocate for academic researchers to adopt reparative research methodologies such as CBPR to be used when studying issues pertaining to Indigenous Peoples or individuals. However, the frequency and consistency of CBPR implementation within scholarly discourse are unknown. Therefore, this project’s goal is two-fold: (1) to understand what comprises CBPR in Indigenous research and (2) to determine if CBPR has been historically used in Indigenous employment research. Method: Using a systematic literature review process, sixteen articles about CBPR use with Indigenous groups were selected, and content was analyzed to identify key components comprising CBPR usage. An Indigenous CBPR components framework was constructed and subsequently utilized to analyze the Indigenous employment empirical literature. A similar systematic literature review process was followed to search for relevant empirical articles on Indigenous employment. A total of 120 articles were identified in six global regions: Australia, New Zealand, Canada, America, the Pacific Islands, and Greenland/Norway. Each empirical study was procedurally examined and coded for criteria inclusion using content analysis directives. Results: Analysis revealed that, in total, CBPR elements were used 14% of the time in Indigenous employment research. Most studies (n=69; 58%) neglected to mention using any CBPR components, while just two studies discussed implementing all sixteen (2%). The most significant determinant of overall CBPR use was community member partnership (CP) in the research process. Studies from New Zealand were most likely to use CBPR components, followed by Canada, Australia, and America. While CBPR use did increase slowly over time, meaningful temporal trends were not found. Further, CBPR use did not directly correspond with the total number of topical articles published that year. Conclusions: Community-initiated and engaged research approaches must be better utilized in employment studies involving Indigenous Peoples. Future research efforts must be particularly attentive to community-driven objectives and research protocols, emphasizing specific areas of concern relevant to the field of I/O psychology, such as organizational support, recruitment, and selection.Keywords: community-based participatory research, content analysis, employment, indigenous research, international, reconciliation, recruitment, reparative research, selection, systematic literature review
Procedia PDF Downloads 7455 Mean Nutrient Intake and Nutrient Adequacy Ratio in India: Occurrence of Hidden Hunger in Indians
Authors: Abha Gupta, Deepak K. Mishra
Abstract:
The focus of food security studies in India has been on the adequacy of calories and its linkage with poverty level. India currently being undergoing a massive demographic and epidemiological transition has demonstrated a decline in average physical activity with improved mechanization and urbanization. Food consumption pattern is also changing with decreasing intake of coarse cereals and a marginal increase in the consumption of fruits, vegetables and meat products resulting into a nutrition transition in the country. However, deficiency of essential micronutrients such as vitamins and minerals is rampant despite their growing importance in fighting back with lifestyle and other modern diseases. The calorie driven studies can hardly tackle the complex problem of malnutrition. This paper fills these research lacuna and analyses mean intake of different major and micro-nutrients among different socio-economic groups and adequacy of these nutrients from recommended dietary allowance. For the purpose, a cross-sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of the state of Uttar Pradesh, India. Data on quantity consumed of 74 food items grouped into 10 food categories with a recall period of seven days was collected from the households and converted into energy, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, niacin and vitamin C using standard guidelines of National Institute of Nutrition. These converted nutrients were compared with recommended norms given by National Nutrition Monitoring Bureau. Per capita nutrient adequacy was calculated by dividing mean nutrient intake by the household size and then by comparing it with recommended norm. Findings demonstrate that source of both macro and micro-nutrients are mainly cereals followed by milk, edible oil and sugar items. Share of meat in providing essential nutrients is very low due to vegetarian diet. Vegetables, pulses, nuts, fruits and dry fruits are a poor source for most of the nutrients. Further analysis evinces that intake of most of the nutrients is higher than the recommended norm. Riboflavin is the only vitamin whose intake is less than the standard norm. Poor group, labour, small farmers, Muslims, scheduled caste demonstrate comparatively lower intake of all nutrients than their counterpart groups, though, they get enough macro and micro-nutrients significantly higher than the norm. One of the major reasons for higher intake of most of the nutrients across all socio-economic groups is higher consumption of monotonous diet based on cereals and milk. Most of the nutrients get their major share from cereals particularly wheat and milk intake. It can be concluded from the analysis that although there is adequate intake of most of the nutrients in the diet of rural population yet their source is mainly cereals and milk products depicting a monotonous diet. Hence, more efforts are needed to diversify the diet by giving more focus to the production of other food items particularly fruits, vegetables and pulse products. Awareness among the population, more accessibility and incorporating food items other than cereals in government social safety programmes are other measures to improve food security in India.Keywords: hidden hunger, India, nutrients, recommended norm
Procedia PDF Downloads 31654 How Can Personal Protective Equipment Be Best Used and Reused: A Human Factors based Look at Donning and Doffing Procedures
Authors: Devin Doos, Ashley Hughes, Trang Pham, Paul Barach, Rami Ahmed
Abstract:
Over 115,000 Health Care Workers (HCWs) have died from COVID-19, and millions have been infected while caring for patients. HCWs have filed thousands of safety complaints surrounding safety concerns due to Personal Protective Equipment (PPE) shortages, which included concerns around inadequate and PPE reuse. Protocols for donning and doffing PPE remain ambiguous, lacking an evidence-base, and often result in wide deviations in practice. PPE donning and doffing protocol deviations commonly result in self-contamination but have not been thoroughly addressed. No evidence-driven protocols provide guidance on protecting HCW during periods of PPE reuse. Objective: The aim of this study was to examine safety-related threats and risks to Health Care Workers (HCWs) due to the reuse of PPE among Emergency Department personnel. Method: We conducted a prospective observational study to examine the risks of reusing PPE. First, ED personnel were asked to don and doff PPE in a simulation lab. Each participant was asked to don and doff PPE five times, according to the maximum reuse recommendation set by the Centers for Disease Control and Prevention (CDC). Each participant was videorecorded; video recordings were reviewed and coded independently by at least 2 of the 3trained coders for safety behaviors and riskiness of actions. A third coder was brought in when the agreement between the 2 coders could not be reached. Agreement between coders was high (81.9%), and all disagreements (100%) were resolved via consensus. A bowtie risk assessment chart was constructed analyzing the factors that contribute to increased risks HCW are faced with due to PPE use and reuse. Agreement amongst content experts in the field of Emergency Medicine, Human Factors, and Anesthesiology was used to select aspects of health care that both contribute and mitigate risks associated with PPE reuse. Findings: Twenty-eight clinician participants completed five rounds of donning/doffing PPE, yielding 140 PPE donning/doffing sequences. Two emerging threats were associated with behaviors in donning, doffing, and re-using PPE: (i) direct exposure to contaminant, and (ii) transmission/spread of contaminant. Protective behaviors included: hand hygiene, not touching the patient-facing surface of PPE, and ensuring a proper fit and closure of all PPE materials. 100% of participants (n= 28) deviated from the CDC recommended order, and most participants (92.85%, n=26) self-contaminated at least once during reuse. Other frequent errors included failure to tie all ties on the PPE (92.85%, n=26) and failure to wash hands after a contamination event occurred (39.28%, n=11). Conclusions: There is wide variation and regular errors in how HCW don and doffPPE while including in reusing PPE that led to self-contamination. Some errors were deemed “recoverable”, such as hand washing after touching a patient-facing surface to remove the contaminant. Other errors, such as using a contaminated mask and accidentally spreading to the neck and face, can lead to compound risks that are unique to repeated PPE use. A more comprehensive understanding of the contributing threats to HCW safety and complete approach to mitigating underlying risks, including visualizing with risk management toolsmay, aid future PPE designand workflow and space solutions.Keywords: bowtie analysis, health care, PPE reuse, risk management
Procedia PDF Downloads 9053 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production
Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne
Abstract:
— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling
Procedia PDF Downloads 18852 Using Technology to Deliver and Scale Early Childhood Development Services in Resource Constrained Environments: Case Studies from South Africa
Authors: Sonja Giese, Tess N. Peacock
Abstract:
South African based Innovation Edge is experimenting with technology to drive positive behavior change, enable data-driven decision making, and scale quality early years services. This paper uses five case studies to illustrate how technology can be used in resource-constrained environments to first, encourage parenting practices that build early language development (using a stage-based mobile messaging pilot, ChildConnect), secondly, to improve the quality of ECD programs (using a mobile application, CareUp), thirdly, how to affordably scale services for the early detection of visual and hearing impairments (using a mobile tool, HearX), fourthly, how to build a transparent and accountable system for the registration and funding of ECD (using a blockchain enabled platform, Amply), and finally enable rapid data collection and feedback to facilitate quality enhancement of programs at scale (the Early Learning Outcomes Measure). ChildConnect and CareUp were both developed using a design based iterative research approach. The usage and uptake of ChildConnect and CareUp was evaluated with qualitative and quantitative methods. Actual child outcomes were not measured in the initial pilots. Although parents who used and engaged on either platform felt more supported and informed, parent engagement and usage remains a challenge. This is contrast to ECD practitioners whose usage and knowledge with CareUp showed both sustained engagement and knowledge improvement. HearX is an easy-to-use tool to identify hearing loss and visual impairment. The tool was tested with 10000 children in an informal settlement. The feasibility of cost-effectively decentralising screening services was demonstrated. Practical and financial barriers remain with respect to parental consent and for successful referrals. Amply uses mobile and blockchain technology to increase impact and accountability of public services. In the pilot project, Amply is being used to replace an existing paper-based system to register children for a government-funded pre-school subsidy in South Africa. Early Learning Outcomes Measure defines what it means for a child to be developmentally ‘on track’ at aged 50-69 months. ELOM administration is enabled via a tablet which allows for easy and accurate data collection, transfer, analysis, and feedback. ELOM is being used extensively to drive quality enhancement of ECD programs across multiple modalities. The nature of ECD services in South Africa is that they are in large part provided by disconnected private individuals or Non-Governmental Organizations (in contrast to basic education which is publicly provided by the government). It is a disparate sector which means that scaling successful interventions is that much harder. All five interventions show the potential of technology to support and enhance a range of ECD services, but pathways to scale are still being tested.Keywords: assessment, behavior change, communication, data, disabilities, mobile, scale, technology, quality
Procedia PDF Downloads 13351 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction
Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman
Abstract:
Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation
Procedia PDF Downloads 9250 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach
Authors: Kathy Pain, Nalumino Akakandelwa
Abstract:
The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping
Procedia PDF Downloads 69