Search results for: data reduction
27012 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 7027011 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 34027010 The Effects of Chamomile on Serum Levels of Inflammatory Indexes to a Bout of Eccentric Exercise in Young Women
Authors: K. Azadeh, M. Ghasemi, S. Fazelifar
Abstract:
Aim: Changes in stress hormones can be modify response of immune system. Cortisol as the most important body corticosteroid is anti-inflammatory and immunosuppressive hormone. Normal levels of cortisol in humans has fluctuated during the day, In other words, cortisol is released periodically, and regulate through the release of ACTH circadian rhythm in every day. Therefore, the aim of this study was to determine the effects of Chamomile on serum levels of inflammatory indexes to a bout of eccentric exercise in young women. Methodology: 32 women were randomly divided into 4 groups: high dose of Chamomile, low dose of Chamomile, ibuprofen and placebo group. Eccentric exercise included 5 set and rest period between sets was 1 minute. For this purpose, subjects warm up 10 min and then done eccentric exercise. Each participant completed 15 repetitions with optional 20 kg weight or until can’t continue moving. When the subject was no longer able to continue to move, immediately decreased 5 kg from the weight and the protocol continued until cause exhaustion or complete 15 repetitions. Also, subjects received specified amount of ibuprofen and Chamomile capsules in target groups. Blood samples in 6 stages (pre of starting pill, pre of exercise protocol, 4, 24, 48 and 72 hours after eccentric exercise) was obtained. The levels of cortisol and adrenocorticotropic hormone levels were measured by ELISA way. K-S test to determine the normality of the data and analysis of variance for repeated measures was used to analyze the data. A significant difference in the p < 0/05 accepted. Results: The results showed that Individual characteristics including height, weight, age and body mass index were not significantly different among the four groups. Analyze of data showed that cortisol and ACTH basic levels significantly decreased after supplementation consumption, but then gradually significantly increased in all stages of post exercise. In High dose of Chamomile group, increasing tendency of post exercise somewhat less than other groups, but not to a significant level. The inter-group analysis results indicate that time effect had a significant impact in different stages of the groups. Conclusion: The results of this study, one session of eccentric exercise increased cortisol and ACTH hormone. The results represent the effect of high dose of Chamomile in the prevention and reduction of increased stress hormone levels. As regards use of medicinal plants and ibuprofen as a pain medication and inflammation has spread among athletes and non-athletes, the results of this research can provide information about the advantages and disadvantages of using medicinal plants and ibuprofen.Keywords: chamomile, inflammatory indexes, eccentric exercise, young girls
Procedia PDF Downloads 42027009 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data
Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter
Procedia PDF Downloads 15527008 Quadriceps Muscle Activity in Response to Slow and Fast Perturbations following Fatiguing Exercise
Authors: Nosratollah Hedayatpour, Hamid Reza Taheri, Mehrdad Fathi
Abstract:
Introduction: Quadriceps femoris muscle is frequently involved in various movements e.g., jumping, landing) during sport and/or daily activities. During ballistic movement when individuals are faced with unexpected knee perturbation, fast twitch muscle fibers contribute to force production to stabilize knee joint. Fast twitch muscle fiber is more susceptible to fatigue and therefor may reduce the ability of the quadriceps muscle to stabilize knee joint during fast perturbation. Aim: The aim of this study was to investigate the effect of fatigue on postural response of the knee extensor muscles to fast and slow perturbations. Methods: Fatigue was induced to the quadriceps muscle using a KinCom Isokinetic Dynamometer (Chattanooga, TN). Bipolar surface electromyography (EMG) signals were simultaneously recorded from quadriceps components (vastus medialis, rectus femoris, and vastus lateralis) during pre- and post-fatigue postural perturbation performed at two different velocities of 120 ms and 250 mes. Results: One-way ANOVA showed that maximal voluntary knee extension force and time to task failure, and associated EMG activities were significantly reduced after fatiguing knee exercise (P< 0.05). Two-ways ANOVA also showed that ARV of EMG during backward direction was significantly larger than forward direction (P< 0.05), and during fast-perturbation it was significantly higher than slow-perturbation (P< 0.05). Moreover, ARV of EMG was significantly reduced during post fatigue perturbation, with the largest reduction identified for fast-perturbation compared with slow perturbation (P< 0.05). Conclusion: A larger reduction in muscle activity of the quadriceps muscle was observed during post fatigue fast-perturbation to stabilize knee joint, most likely due to preferential recruitment of fast twitch muscle fiber which are more susceptible to fatigue. This may partly explain that why knee injuries is common after fast ballistic movement.Keywords: electromyography, fast-slow perturbations, fatigue, quadriceps femoris muscle
Procedia PDF Downloads 52827007 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining
Procedia PDF Downloads 35527006 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete
Authors: Devendra Kumar Pandey, Debabrata Chakraborty
Abstract:
The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete
Procedia PDF Downloads 30627005 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework
Authors: Abbas Raza Ali
Abstract:
Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation
Procedia PDF Downloads 17827004 Programming with Grammars
Authors: Peter M. Maurer Maurer
Abstract:
DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation
Procedia PDF Downloads 15027003 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses
Authors: Ouzayr Rabhi, Ibtissam Arrassen
Abstract:
To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML
Procedia PDF Downloads 16327002 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps
Authors: Butta Singh
Abstract:
This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram
Procedia PDF Downloads 20027001 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications
Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri
Abstract:
TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.Keywords: titanium dioxide, graphene oxide, thin films, solar cells
Procedia PDF Downloads 16327000 The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize
Authors: Mathias Twizeyimana, Urmila Adhikari, Julius P. Sserumaga, David Ingham
Abstract:
The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management.Keywords: aflatoxin, microorganism bacteria, biocontrol, beneficial microbes
Procedia PDF Downloads 18726999 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 32926998 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy
Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell
Abstract:
Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)
Procedia PDF Downloads 23426997 A Review of the Future of Sustainable Urban Water Supply in South Africa
Authors: Jeremiah Mutamba
Abstract:
Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.Keywords: sustainable, water scarcity, water supply, South Africa
Procedia PDF Downloads 12526996 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64326995 Nutrition Intervention for Spinal Cord Injury in Critical Care
Authors: Dina Muharib
Abstract:
Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested.Keywords: SCI, energy, protein, nutrition assessment, eneral feeding, nitrogen balance
Procedia PDF Downloads 46826994 Spaces in the City to Practice Physical Activities: Case Study of Conchal, São Paulo, Brazil
Authors: Ana Maria Girotti Sperandio, Jussara Conceição Guarnieri, Lauro Luiz Francisco Filho, Ana Claudia Martins Alves, Adriana Aparecida Carneiro Rosa
Abstract:
The urban planning of a city should contemplate the construction of healthy spaces to provide quality of life for people. In a Brazilian municipality located 180 km from the capital of São Paulo with around 27,000 thousand inhabitants, the federal government made possible a program that allows the improvement of the quality of life of the inhabitants through the practice of physical activity. To describe health promotion strategies in the city that collaborate in the reduction of chronic non-communicable diseases (CDNT) and the improvement the quality of its residents. Considering the CDNT as a fundamental public health concern in different countries, the methodology of this work considered the different actions of health promotion that occurred in the city for the implementation of the Polo Health Academy with the objective of increasing the population's access to places that could develop targeted physical activities. As an instrument, it used records of participants of this academy such as: assessment sheets, evolution, photos, filming and daily reports of physical activities. Results: The implantation and implementation process of the Polo Health Academy in the city of Conchal / SP / Brazil was in accordance with the principles and values of the National Health Promotion Policy (PNaPS) in Brazil and with the city statute, that provides improvement in the quality of life of the Brazilian population. An increase was observed in the number of participants in different hours practicing physical activities in the territory linked to one of the five Health Units, showing the program provides that happiness and well-being to the students. The Brazilian health promotion policy, combined with the city’s development policy, provides the population with access to programs that stimulate the reduction of CDNTs, confirming the urban planning of a healthy city.Keywords: health city, health promotion, physical activity, urban planning
Procedia PDF Downloads 19426993 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 3126992 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21626991 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 19526990 Viability and Sensitivity of SFN6B (Host-Specific Bacteriophage) towards Shigella Flexneri in Various Water Samples
Authors: Siewchuiang Sia, Gimcheong Tan
Abstract:
Bacteriophages are the most abundant and genetically diverse living entities on earth; they help in regulating and maintaining microbial diversity and balance in its natural ecosystem. In this study, the infectivity of SFN6B tailed phage was investigated in various water samples. Host bacteria (Shigella flexneri) were spiked in sterilized environmental and domestic water samples, followed by SFN6B treatment. Two incubation conditions were selected for this study, 37 oC and room temperature. S. flexneri and SFN6B viability were monitored hourly for consecutive 7 hours and extended viability study for consecutive 4 days. Absorbance of all bacteria spiked water samples were taken to monitor the bacteria count. Results showed reduction in the absorbance of the SFN6B treated water sample as compared to negative control, indicating reduction in bacterial count either due to negative growth or lysis by the lytic bacteriophage. Consistent with the result, SFN6B titer increases for first two days. However, prolong incubation of these cultures reaches equilibrium, between phage and bacteria. Temperature and water sample source also influence the interaction between S. flexneri and SFN6B. Stronger interaction was observed in 37oC as compared to room temperature, where higher bacteria count and phage titer increase were recorded. Availability of nutrient in water sample also plays a crucial role in the interaction between bacteria and phage. Higher nutrient level, such as lake and river waters were observed to give better infectivity and viability of both bacteria and phage as compared to tab water. It is believed that S. flexneri continue to remain viable and able to grow in the present of SFN6B bacteriophage, but the number was closely regulated by surrounding phages. This allows better understanding of the characteristics of SFN6B that could serve as the basis for future studies and applications.Keywords: bacteriophage, Shigella flexneri, infection, microbial diversity
Procedia PDF Downloads 28026989 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 52026988 Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon
Authors: Arkadiusz Urzędowski, Dorota Wójcicka-Migasiuk, Andrzej Sachajdak, Magdalena Paśnikowska-Łukaszuk
Abstract:
Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined.Keywords: heat transfer, surface roughness, surface emissivity, radiation
Procedia PDF Downloads 9926987 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33826986 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.Keywords: RWIS, visibility distance, low visibility, adverse weather
Procedia PDF Downloads 25326985 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 55926984 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6926983 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin
Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles
Procedia PDF Downloads 128