Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: corporate credit rating prediction

2041 Environmental Education Programmes in Oil Producing Indigenous Communities in Ogoniland, Nigeria

Authors: Lele Dominic Dummene

Abstract:

Economic development and environmental development have been a long-lasting debate between capitalist and environmentalist. It is also seen as a debate between modernisation, globalisation at one end, and environmental justice at the other end. Our society today is moving rapidly towards development and increased industrial revolutions, and globalisation. Indigenous communities in Ogoniland are also experiencing such development due to multinationals’ exploration of crude oil in the communities. The oil exploration activities have caused environmental, socio-economic, health, and political problems in indigenous communities in Ogoniland. These issues require depth understanding from all sectors (public, government, and corporate sectors) to address them. Hence, this paper presents the types of environmental education programs used in indigenous communities in Ogoniland to address environmental issues and other problems caused by oil exploration in Ogoniland, Nigeria. These environmental education programs contributes to environmental policy creation, development of environmental curriculum, and pragmatic actions towards mitigating environmental degradation and related environmental socio-economic and political issues in indigenous communities.

Keywords: environmental education, indigenous communities, environmental problems, ogoniland

Procedia PDF Downloads 145
2040 Innovative Strategies for Improving Writing Skills of Secondary Level Students

Authors: Ihsan Ullah Khan, Asim Kareem, Naveed Saif

Abstract:

This research study examined the application of innovative strategies for improving writing skills of Secondary level students. It also examined the steps taken by Secondary level teachers for the improvement of writing skills of their students. Effective written communication is the problem faced by all the ESL students at secondary level. The objective of the study was to help the secondary level students to overcome this problem. More specifically, this research study aimed to guide the teachers, teaching at secondary level, to bring innovation in their teaching by showing the results of innovative strategies. In order to know about the practices of the teachers, inside the classroom, data was calculated through rating scale questionnaire. After that experimental study was carried out. For the experimental study a 10th grade class was selected. Results were drawn by analyzing the pre and post-tests of the students with the help of independent sample t-test. The results showed that a significant change occurred in the writing skills of the students, belonging to Treatment group. No improvement was observed in the writing skills of the students, belonging to Control group. Thus this research study proved to be a great contribution by guiding the teachers to bring a significant change in the writing skills of the students.

Keywords: writing skills, innovative strategies, teachers, students, treatment group, control group

Procedia PDF Downloads 442
2039 Research on the Relationship between Localization Strategic Human Resource Management Practices and Firm Performance: A Comparison of Japanese Multinational Enterprise Subsidiaries in Vietnam

Authors: Nana Weng

Abstract:

Firstly, based on two diamond models and Value-Rarity-Inimitability-Organization framework, this paper analyzes the Country Specific factors of and firm specific factors which influence subsidiaries’ sustainable competitive advantage. Then, according to the main content of Strategic Human Resource Management (SHRM) research that HRM strategy should fit into corporate strategy, we explained what the SHRM practices should be in the context of localization strategies within Multinational Enterprise (MNE) companies. Then we choose two Japanese MNE subsidiaries in the same industry and tested the hypothesis that localization SHRM practices positively impact on subsidiary’s sustainable competitive advantage, further positively affect firm integrated performance (both financial performance and organizational and organizational performance) lever through High Performance Work Practices (HPWPs) of local employees.

Keywords: localization SHRM, firm integrated performance, Japanese MNE subsidiaries, Vietnam

Procedia PDF Downloads 380
2038 A Systematic Mapping of the Use of Information and Communication Technology (ICT)-Based Remote Agricultural Extension for Women Smallholders

Authors: Busiswa Madikazi

Abstract:

This systematic mapping study explores the underrepresentation of women's contributions to farming in the Global South within the development of Information and Communication Technologies (ICT)-based extension methods. Despite women farmers constituting 70% of the agricultural labour force, their productivity is hindered by various constraints, including illiteracy, household commitments, and limited access to credit and markets. A systematic mapping approach was employed with the aim of identifying evidence gaps in existing ICT extension for women farmers. The data collection protocol follows a structured approach, incorporating key criteria for inclusion, exclusion, search strategy, and coding and the PICO strategy (Population, Intervention, Comparator, and Outcome). The results yielded 119 articles that qualified for inclusion. The findings highlight that mobile phone apps (WhatsApp) and radio/television programming are the primary extension methods employed while integrating ICT with training, field visits, and demonstrations are underutilized. Notably, the study emphasizes the inadequate attention to critical issues such as food security, gender equality, and attracting youth to farming within ICT extension efforts. These findings indicate a significant policy and practice gap, neglecting community-driven approaches that cater to women's specific needs and enhance their agricultural production. Map highlights the importance of refocusing ICT extension efforts to address women farmers’ unique challenges, thereby contributing to their empowerment and improving agricultural practices.

Keywords: agricultural extension, ICT, women farmers, smallholders

Procedia PDF Downloads 63
2037 Thyroid Stimulating Hormone Is a Biomarker for Stress: A Prospective Longitudinal Study

Authors: Jeonghun Lee

Abstract:

Thyroid-stimulating hormone (TSH) is regulated by the negative feedback of T3 and T4 but is affected by cortisol and cytokines during allostasis. Hence, TSH levels can be influenced by stress through cortisol. In the present study, changes in TSH levels under stress and the potential of TSH as a stress marker were examined in patients lacking T3 or T4 feedback after thyroid surgery. The three stress questionnaires (Korean version of the Daily Stress Inventory, Social Readjustment Rating Scale, and Stress Overload Scale-Short [SOSS]), open-ended question (OQ), and thyroid function tests were performed twice in 106 patients enrolled from January 2019 to October 2020. Statistical analysis was performed using the generalized linear mixed effect model (GLMM) in R software version 4.1.0. In a multiple LMM involving 106 patients, T3, T4, SOSS (category), open-ended questions, the extent of thyroidectomy, and preoperative TSH were significantly correlated with lnTSH. T3 and T4 increased by 1 and lnTSH decreased by 0.03, 3.52, respectively. In case of a stressful event on OQ, lnTSH increased by 1.55. In the high-risk group, lnTSH increased by 0.79, compared with the low group (p<0.05). TSH had a significant relationship with stress, together with T3, T4, and the extent of thyroidectomy. As such, it has the potential to be used as a stress marker, though it showed a low correlation with other stress questionnaires. To address this limitation, questionnaires on various social environments and research on copy strategies are necessary for future studies.

Keywords: stress, surgery, thyroid stimulating hormone, thyroidectomy

Procedia PDF Downloads 91
2036 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
2035 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

Authors: Esra Polat

Abstract:

Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.

Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis

Procedia PDF Downloads 280
2034 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 385
2033 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 415
2032 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus

Procedia PDF Downloads 186
2031 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 38
2030 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 305
2029 CFD Modeling of Pollutant Dispersion in a Free Surface Flow

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Said, Hervé Bournot, Georges Le Palec

Abstract:

In this work, we determine the turbulent dynamic structure of pollutant dispersion in two-phase free surface flow. The numerical simulation was performed using ANSYS Fluent. The flow study is three-dimensional, unsteady and isothermal. The study area has been endowed with a rectangular obstacle to analyze its influence on the hydrodynamic variables and progression of the pollutant. The numerical results show that the hydrodynamic model provides prediction of the dispersion of a pollutant in an open channel flow and reproduces the recirculation and trapping the pollutant downstream near the obstacle.

Keywords: CFD, free surface, polluant dispersion, turbulent flows

Procedia PDF Downloads 545
2028 A Study of Customer Aggression towards Frontline Employees in Some Hotels in Imo State, Nigeria

Authors: Polycarp A. Igbojekwe, Chizoba Amajuoyi, Peterson Nwokorie

Abstract:

The main purpose of this study was to carry out a survey of customer’s aggression towards hotel workers and make contributions on the prevalence and rationale behind customer’s aggression. Data for the study were gathered with a four-point Likert type rating scale. Samples were drawn from frontline hotel employees, managers and customers of twelve (12) hotels selected from three zones of Imo State. Data analyses were conducted using simple percentage, descriptive statistics; and Z-test statistical technique was used to test hypotheses. Among other factors, service failure and verbal abuse by service providers and poor quality product compared to price were identified by customers as the three major factors that can lead to customer aggression. Frontline employees indentified verbal abuse as the most common mode of aggression and that customer aggression causes emotional disturbance in them. The study also revealed that customer aggression is more prevalent in the 1&2 star hotels than it is in 3-5 star hotels. Most of the hotels have not institutionalized systematic approaches needed to effectively face the challenges of customer aggression, thus, customer aggression has become a common feature in the industry. Frontline jobs demand high emotional input. Therefore, we recommend that frontline employees should be given emotional support by their managers and also trained on how to cope with emotional disturbance.

Keywords: customer aggression, emotional disturbance, employee well-being, service failure, verbal abuse

Procedia PDF Downloads 277
2027 Characterization of Biodiesel Produced from Cow-Tallow

Authors: Nwadike Emmanuel Chinagoron, Achebe Chukwunonso, Ezeliora Chukwuemeka Daniel, Azaka Onyemazuwa Andrew

Abstract:

In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively.

Keywords: biodiesel, characterization, cow-tallow, cetane rating

Procedia PDF Downloads 537
2026 Impact of Sustainability Reporting on the Financial Performance of Deposit Money Banks: Pre-Post Analysis of Integrating Environmental, Social, and Governance Disclosure into Corporate Annual Reports

Authors: A. O. Talabi, F. M. Taib, D. J. Jalaludin

Abstract:

The influence of sustainability reporting on Deposit Money Banks (DMBs)' financial performance both before and after mandated environmental, social, and governance (ESG) disclosure is examined in this article. Using a sample size of the top six strategically important listed banks in Nigeria, the study employed the paired sample t-test to assess the pre-mandatory ESG period (2009-2015) and the post-mandatory ESG period (2016-2022). According to the findings, there was no discernible difference between the performance of DMBs in Nigeria before and after the requirement for ESG disclosure. In the pre-mandatory requirement time, sustainability reporting is a major predictor of financial metrics, but in the post-mandatory requirement period, there was no discernible change in financial performance. Market authorities ought to have unrestricted authority to impose severe fines for noncompliance and bring legal action against corporations that fail to disclose ESG. This work contributes to the literature on ESG disclosure and financial performance by considering two different periods.

Keywords: financial, performance, sustainability, reporting

Procedia PDF Downloads 139
2025 Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions

Authors: Christian J. Kennett, Mark A. Baldwin

Abstract:

As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration.

Keywords: impact biomechanics, manned spaceflight, model correlation, multi-axial loading

Procedia PDF Downloads 114
2024 Performance Evaluation of Iar Multi Crop Thresher

Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam

Abstract:

Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.

Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher

Procedia PDF Downloads 350
2023 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 131
2022 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 107
2021 The Occurrence of Depression with Chronic Liver Disease

Authors: Roop Kiran, Muhammad Shoaib Zafar, Nazish Idrees Chaudhary

Abstract:

Depression is known to be the second most frequently occurring comorbid mental illness among patients suffering from chronic physical conditions. Around the world, depression is associated with chronic liver diseases as one of the dominant symptoms. This evidence brings attention to the research about various predictors for short life expectancy and poor quality of life in patients suffering from comorbid depression and CLD. Following are the objectives of this study i) measure the occurrence rate of comorbid depression among patients with CLD and ii) find the frequency of risk factors between patients with and without depression comorbid with CLD. This is a quantitative study with a cross-sectional design. The research data was collected through a measure called Hamilton Depression Rating Scale (HDRS) with a demographic Performa from 100 patients who visited the Department of Psychiatry for consultation at Mayo Hospital Lahore with a diagnosed CLD from the last four years. There were (42%) patients with CLD who had comorbid depression. Among depressed and non-depressed patients, significant differences were found (p<0.05) for unemployment in 25 (59.5%) males and 20 (34.5%) female patients, for co-morbidity in 25 (59.5%) males and 18 (31.0%) female patients, for illiteracy in 18 (42.9%) males and 13 (22.4%) female patients, for the history of CLD for more than the last 2years in 41 (97.6%) males and 47 (81.0%) female patients, for severity of CLD in 26 (61.9%) males and 20 (34.5%) female patients. This concludes that depression frequently occurs among patients with CLD. This study recommends considerable attention to plan preventative measures in the future and develop such intervention protocols that consider the management of risk factors that significantly influence comorbid depression with CLD.

Keywords: psychiatry, comorbid, health, quality of life

Procedia PDF Downloads 201
2020 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: hiden markov model, believe desire intention, neural activation, simulation

Procedia PDF Downloads 376
2019 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 407
2018 The Effects of Branding on Profitability of Banks in Ghana

Authors: Evans Oteng, Clement Yeboah, Alexander Otechere-Fianko

Abstract:

In today’s economy, despite achievements and advances in the banking and financial institutions, there are challenges that will require intensive attempts on the portion of the banks in Ghana. The perceived decline in profitability of banks seems to have emanated from ineffective branding. Hence, the purpose of this quantitative descriptive-correlational study was to examine the effects of branding on the profitability of banks in Ghana. The researchers purposively sampled some 116 banks in Ghana. Self-developed Likert scale questionnaires were administered to the finance officers of the financial institutions. The results were found to be statistically significant, F (1, 114) = 4. 50, p = .036. This indicates that those banks in Ghana with good branding practices have strong marketing tools to identify and sell their products and services and, as such, have a big market share. The correlation coefficients indicate that branding has a positive correlation with profitability and are statistically significant (r=.207, p<0.05), which signifies that as branding increases, the return on equity’s profitability indicator improves and vice versa. Future researchers can consider other factors beyond branding, such as online banking. The study has significant implications for the success and competitive advantage of those banks that effective branding allows them to differentiate themselves from their competitors. A strong and unique brand identity can help a bank stand out in a crowded market, attract customers, and build customer loyalty. This can lead to increased market share and profitability. Branding influences customer perception and trust. A well-established and reputable brand can create a positive image in the minds of customers, enhancing their confidence in the bank's products and services. This can result in increased customer acquisition, customer retention and a positive impact on profitability. Banks with strong brands can leverage their reputation and customer trust to cross-sell additional products and services. When customers have confidence in the brand, they are more likely to explore and purchase other offerings from the same institution. Cross-selling can boost revenue streams and profitability. Successful branding can open up opportunities for brand extensions and diversification into new products or markets. Banks can leverage their trusted brand to introduce new financial products or expand their presence into related areas, such as insurance or investment services. This can lead to additional revenue streams and improved profitability. This study can have implications for education. Thus, increased profitability of banks due to effective branding can result in higher financial resources available for corporate social responsibility (CSR) activities. Banks may invest in educational initiatives, such as scholarships, grants, research projects, and sponsorships, to support the education sector in Ghana. Also, this study can have implications for logistics and supply chain management. Thus, strong branding can create trust and credibility among customers, leading to increased customer loyalty. This loyalty can positively impact the bank's relationships with its suppliers and logistics partners. It can result in better negotiation power, improved supplier relationships, and enhanced supply chain coordination, ultimately leading to more efficient and cost-effective logistics operations.

Keywords: branding, profitability, competitors, customer loyalty, customer retention, corporate social responsibility, cost-effective, logistics operations

Procedia PDF Downloads 77
2017 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 154
2016 Impact of Marketing Orientation on Environment and Firm’s Performance

Authors: Sabita Mahapatra

Abstract:

‘Going green’ has been an emerging issue worldwide driving companies to continuously enhance their green capabilities and implement innovative green practices to protect the environment and improve business performance. Green has become a contemporary business environmental issue. The resource advantage theory is adopted in the present study to observe the impact of marketing orientation and green innovation practices on environmental and firm’s performance. The small and medium firms compared to large firms have different approach towards market orientation as a strategic tool. The present study proposes a conceptual framework regarding the impact of market orientation on environmental and firm’s performance through green innovation practices in the context of small and medium scale industries (SMEs). The propositions developed in the present paper would provide scope for future research study to validate the conceptual framework in the emerging economy like India.

Keywords: market orientation, green innovation practices, environment performance, corporate performance, emerging market

Procedia PDF Downloads 322
2015 Analysis of Influence of Intrinsic Motivation on Employee Affective Commitment

Authors: Yashar Ibragimov, Nino Berishvili

Abstract:

Technological, economic and other innovation-related advances of the 21st century have influenced the old, traditional business models. Presently, organizational change has become an integral part of corporate strategy for the majority of businesses. Such shifts have resulted in both new challenges and opportunities. The expansion of the use of information and communication technologies has driven fundamental shifts towards digital change. Organizations are being forced to revise processes, goals and overall mission in order to stay competitive in the marketplace. However, the implementation of digital transformation brings uncertainty, causes stress and raises concerns about future jobs. The study employs systematic literature review to fill the gap in understanding relationship between employee motivation and commitment during the transformation. A conceptual model proposes the antecedents (OCB and Leader Member Exchange) of employee motivation and investigates its impact on employee commitment to change. The utilized model elucidates how to maintain employee motivation and commitment in the context of organizational transformation and sets the ground for future research.

Keywords: employee motivation, change commitment, change management, leader member exchange, organizational citizenship behavior

Procedia PDF Downloads 78
2014 Your First Step to Understanding Research Ethics: Psychoneurolinguistic Approach

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Objective: This research aims at investigating the research ethics in the field of science. Method: It is an exploratory research wherein the researchers attempted to cover the phenomenon at hand from all specialists’ viewpoints. Results Discussion is based upon the findings resulted from the analysis the researcher undertook. Concerning the results’ prediction, the researcher needs first to seek highly qualified people in the field of research as well as in the field of statistics who share the philosophy of the research. Then s/he should make sure that s/he is adequately trained in the specific techniques, methods and statically programs that are used at the study. S/he should also believe in continually analysis for the data in the most current methods.

Keywords: research ethics, legal, rights, psychoneurolinguistics

Procedia PDF Downloads 43
2013 Effects of Dividend Policy on Firm Profitability and Growth in Light of Present Economic Conditions

Authors: Madani Chahinaz

Abstract:

This study aims to shed light on the impact of dividend policy on corporate profitability and its relationship to growth, considering the economic developments taking place. The study was conducted on a sample of seven companies for the period from 2014 to 2020, based on a set of determinants to select variables affecting dividend distribution, where the descriptive analytical approach relied upon using graphical data models. The study concluded that companies that follow a well-studied dividend distribution policy enjoy higher profitability rates, which contributes to enhancing their growth in light of the economic developments taking place. There is also no statistically significant relationship between the variables of total asset growth and fixed asset growth and profitability. The study also concluded that there is statistical significance for the relationship between the sales volume growth variable, the self-financing ratio variable, and dividend distribution at a significance level of 0.05, as the random effects model was able to explain 68% of the changes in dividend distribution policy.

Keywords: dividend distribution policy, profitability, growth, self-financing ratio

Procedia PDF Downloads 9
2012 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 147