Search results for: voice activity detection (VAD)
8046 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables
Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei
Abstract:
A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor
Procedia PDF Downloads 2258045 Performance of Riped and Unriped Plantain-Wheat Flour Blend in Biscuit Production
Authors: J. O. Idoko, I. Nwajiaku
Abstract:
Unripe and ripe plantain were dried and milled into flour and used with wheat flour in biscuit production to determine the best plantain-wheat composite flour for biscuit production. The blends as follows: 100% wheat flour, 100% ripe plantain flour, 100% unripe plantain flour, 50% wheat flour and 50% ripe plantain flour and 50% wheat flour and 50% unripe plantain flour. The Biscuit samples were stored at ambient temperature for 8 weeks after which the equilibrium moisture content and water activity were determined. The sensory evaluation of the biscuit samples was also determined. The results of these analyses showed 100% unripe plantain flour as the most stable of the biscuit samples judging from its equilibrium moisture content level of 0.32% and water activity of 0.62. The sensory evaluation results showed Biscuit made from 150:50 ripe plantain and wheat flour as most generally accepted at 5% level of significance.Keywords: biscuit, equilibrium moisture content, performance, plantain, water activity
Procedia PDF Downloads 2148044 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification
Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado
Abstract:
DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles
Procedia PDF Downloads 2458043 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 188042 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 968041 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 1298040 Evaluation of Anti-Arthritic Activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb in Freund's Complete Adjuvant Induced Arthritic Rat Model
Authors: Akshada Amit Koparde, Candrakant S. Magdum
Abstract:
Objective: To investigate the anti-arthritic activity of chloroform extract and Isolate 1 of Eulophia ochreata Lindl and dichloromethane extract and Isolate 2 of Zingiber cassumunar Roxb in adjuvant arthritic (AA) rat model induced by Freund’s complete adjuvant (FCA). Methods: Forty two healthy albino rats were selected and randomly divided into six groups. Freund’s complete adjuvant (FCA) was used to induce arthritis and then treated with chloroform extract, isolate 1 and dichloromethane extract, isolate 2 for 28 days. The various parameters like paw volume, haematological parameters (RBC, WBC, Hb and ESR), were studied. Structural elucidation of active constituents isolate 1 and isolate 2 from Eulophia ochreata Lindl and Zingiber cassumunar Roxb will be done using GCMS and H1NMR. Results: In FCA induced arthritic rats, there was significant increase in rat paw volume whereas chloroform extract and Isolate 1 of Eulophia ochreata Lindl and dichloromethane extract and Isolate 2 of Zingiber cassumunar Roxb treated groups showed strong significant reduction in paw volume. The altered haematological parameters in the arthritic rats were significantly recovered to near normal by the treatment with extracts at the dose of 200 mg/kg. Further histopathological studies revealed the anti-arthritic activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb by preventing cartilage and bone destruction of the arthritic joints of AA rats. Conclusion: Extracts and isolates of Eulophia ochreata Lindl and Zingiber cassumunar Roxb have shown anti-arthritic activity. Decrease in paw volume and normalization of haematological abnormalities in adjuvant induced arthritic rats is significantly seen in the experiment. Further histopathological studies confirmed the anti-arthritic activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb.Keywords: arthritis, Eulophia ochreata Lindl, Freund's complete adjuvant, paw volume, Zingiber cassumunar Roxb
Procedia PDF Downloads 1768039 Short-Term Exposing Effects of 4,4'-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish
Authors: Eun Ko, Moonsung Choi, Sooim Shin
Abstract:
4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system.Keywords: electron transport chain, mitochondrial function, persistent organic pollutant, spectrophotometric assay, zebrafish
Procedia PDF Downloads 2288038 Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time
Authors: T. R. Hidayat, G. Irawan, F. Kurniawan, E. H. I. Prasetya, Suharto, T. F. Ridwan, A. Pitoyo, A. Juniantoro, R. T. Hidayat
Abstract:
Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours.Keywords: rubber swab, modifikasi swab, brush, fishing rubber swab, saving cost
Procedia PDF Downloads 1678037 Superoxide Dismutase Activity of Male Rats after Administration of Extract and Nanoparticle of Ginger Torch Flower
Authors: Tresna Lestari, Tita Nofianti, Ade Yeni Aprilia, Lilis Tuslinah, Ruswanto Ruswanto
Abstract:
Nanoparticle formulation is often used to improve drug absorptivity, thus increasing the sharpness of the action. Ginger torch flower extract was formulated into nanoparticle form using poloxamer 1, 3 and 5%. The nanoparticle was then characterized by its particle size, polydispersity index, zeta potential, entrapment efficiency and morphological form by SEM. The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index less than 0.5 for all formulations, zeta potential -41.0 - (-24.3) mV and entrapment efficiency 89.93-97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of the drug to enhance superoxide dismutase activity.Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer
Procedia PDF Downloads 1598036 Developing a Shared Understanding of Wellbeing: An Exploratory Study in Irish Primary Schools Incorporating the Voices of Teachers
Authors: Fionnuala Tynan, Margaret Nohilly
Abstract:
Wellbeing in not only a national priority in Ireland but in the international context. A review of the literature highlights the consistent efforts of researchers to define the concept of wellbeing. This study sought to explore the understating of Wellbeing in Irish primary schools. National Wellbeing Guidelines in the Irish context frame the concept of wellbeing through a mental health paradigm, which is but one aspect of wellbeing. This exploratory research sought the views of Irish primary-school teachers on their understanding of the concept of wellbeing and the practical application of strategies to promote wellbeing both in the classroom and across the school. Teacher participants from four counties in the West of Ireland were invited to participate in focus group discussion and workshops through the Education Centre Network. The purpose of this process was twofold; firstly to explore teachers’ understanding of wellbeing in the primary school context and, secondly, for teachers to be co-creators in the development of practical strategies for classroom and whole school implementation. The voice of the teacher participants was central to the research design. The findings of this study indicate that the definition of wellbeing in the Irish context is too abstract a definition for teachers and the focus on mental health dominates the discourse in relation to wellbeing. Few teachers felt that they were addressing wellbeing adequately in their classrooms and across the school. The findings from the focus groups highlighted that while teachers are incorporating a range of wellbeing strategies including mindfulness and positive psychology, there is a clear disconnect between the national definition and the implementation of national curricula which causes them concern. The teacher participants requested further practical strategies to promote wellbeing at whole school and classroom level within the framework of the Irish Primary School Curriculum and enable them to become professionally confident in developing a culture of wellbeing. In conclusion, considering wellbeing is a national priority in Ireland, this research promoted the timely discussion the wellbeing guidelines and the development of a conceptual framework to define wellbeing in concrete terms for practitioners. The centrality of teacher voices ensured the strategies proposed by this research is both practical and effective. The findings of this research have prompted the development of a national resource which will support the implementation of wellbeing in the primary school at both national and international level.Keywords: primary education, shared understanding, teacher voice, wellbeing
Procedia PDF Downloads 4578035 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids
Authors: Hiroshi Nakayama, Yuji Ito
Abstract:
Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid
Procedia PDF Downloads 3558034 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 6378033 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection
Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu
Abstract:
Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection
Procedia PDF Downloads 3698032 Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy
Authors: Rejane Maria P. da Silva, Mariana X. Milagre, João Victor de S. Araujo, Leandro A. de Oliveira, Renato A. Antunes, Isolda Costa
Abstract:
The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one.Keywords: Al-Cu-Li alloys, surface preparation effects, electrochemical techniques, localized corrosion
Procedia PDF Downloads 1598031 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 1538030 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network
Procedia PDF Downloads 2768029 Cytotoxic Activity against Hepatocarcinoma and Cholangiocarcinoma Cells of Four Cathartic Herbal Medicines
Authors: Pranporn Kuropakornpong, Srisopa Ruangnoo, Arunporn Itharat
Abstract:
Liver cancer has the highest prevalence rate in the North and Northeast of Thailand. Four Thai medicinal plants such as resin of Ferula asafoetida Regel, latex of Aloe barbadensis Miller leaves, roots of Baliospermum manotanum, and latex of Garcinia hanburyi Hook are used in Thai traditional medicine as cathartic drug and detoxification in liver cancer patients. Thus, this research aimed to evaluate the cytotoxic activity of these plants against hepatocarcinoma (HepG2) and cholangiocarcinoma (KKU-M156) cells by SRB assay. These plants were macerated in 95% ethanol. The results showed that roots of Baliospermum manotanum and latex of Garcinia hanburyi Hook showed the strongest cytotoxicity against HepG2 (IC50 = 3.03+0.91 and 0.62+0.01µg/ml, respectively) and KKU-M156 (IC50 = 0.978+0.663 and 0.006+0.005 µg/ml, respectively). Latex of Garcinia hanburyi Hook also showed high cytotoxicity against normal cell line (IC50=8.86+0.31 µg/ml), and even though its selective values are high, dose of this herb should be limited.Keywords: cholangiocarcinoma, cytotoxic activity, Garcinia hanburyi Hook, hepatocarcinoma
Procedia PDF Downloads 4518028 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 638027 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 2908026 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures
Authors: Mohsen Padervand
Abstract:
Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli
Procedia PDF Downloads 3318025 The Visually Impaired Jogger: Enhancing Interaction and Fitness through the Fun Run
Authors: Zasha Romero, Joe Paschall
Abstract:
This poster will detail the importance of physical activity for the Visually Impaired students and how to promote inclusion in fitness through way of social gatherings and jogging. Furthermore, it will demonstrate how a Health & Kinesiology University Club cooperated in the journey of visually impaired students from participating in physical activity to completing their first 10K fun run. Purpose: The poster will detail how a university’s Health & Kinesiology Club developed a program to promote participation in fitness activities for visually impaired individuals. Also, it will detail their journey from participation in physical activity to completing a 10K fun run. Methods: In an effort to promote inclusion of all into physical activity, a university’s Health & Kinesiology Club developed a non-profit program to challenge visually impaired students to train and complete a 10 kilometer fun run in a South Texas town. The idea was to promote physical fitness through way of social interaction. In order to maintain runners interested, Club students developed training plans and strategies to be able to navigate in a race that was attended by over 18,000 runners. The idea was to promote interaction and life-long fitness amongst participants. Implications: This strategy was done in collaboration with different non-profit institutions to create awareness and provide opportunities for physical fitness, social interaction and life-long fitness skills associated with the jogging. The workshop provided collaboration amongst different entities and novel ideas to create opportunities for a typically underserved population.Keywords: inclusion, participation, management, disability, fitness
Procedia PDF Downloads 3948024 Establishing the Legality of Terraforming under the Outer Space Treaty
Authors: Bholenath
Abstract:
Ever since Elon Musk revealed his plan to terraform Mars on national television in 2015, the debate regarding the legality of such an activity under the current Outer Space Treaty regime is gaining momentum. Terraforming means to alter or transform the atmosphere of another planet to have the characteristics of landscapes on Earth. Musk’s plan is to alter the entire environment of Mars so as to make it habitable for humans. He has long been an advocate of colonizing Mars, and in order to make humans an interplanetary species; he wants to detonate thermonuclear devices over the poles of Mars. For a common man, it seems to be a fascinating endeavor, but for space lawyers, it poses new and fascinating legal questions. Some of the questions which arise are whether the use of nuclear weapons on celestial bodies is permitted under the Outer Space Treaty? Whether such an alteration of the celestial environment would fall within the scope of the term 'harmful contamination' under Article IX of the treaty? Whether such an activity which would put an entire planet under the control of a private company can be permitted under the treaty? Whether such terraforming of Mars would amount to its appropriation? Whether such an activity would be in the 'benefit and interests of all countries'? This paper will be attempt to examine and elucidate upon these legal questions. Space is one such domain where the law should precede man. The paper follows the approach that the de lege lata is not capable of prohibiting the terraforming of Mars. Outer Space Treaty provides the freedoms of space and prescribes certain restrictions on those freedoms as well. The author shall examine the provisions such as Article I, II, IV, and IX of the Outer Space Treaty in order to establish the legality of terraforming activity. The author shall establish how such activity is peaceful use of the celestial body, is in the benefit and interests of all countries, and does neither qualify as national appropriation of the celestial body nor as its harmful contamination. The author shall divide the paper into three chapters. The first chapter would be about the general introduction of the problem, the analysis of Elon Musk’s plan to terraform Mars, and the need to study terraforming from the lens of the Outer Space Treaty. In the second chapter, the author shall attempt to establish the legality of the terraforming activity under the provisions of the Outer Space Treaty. In this vein, the author shall put forth the counter interpretations and the arguments which may be formulated against the lawfulness of terraforming. The author shall show as to why the counter interpretations establishing the unlawfulness of terraforming should not be accepted, and in doing so, the author shall provide the interpretations that should prevail and ultimately establishes the legality of terraforming activity under the treaty. In the third chapter, the author shall draw relevant conclusions and give suggestions.Keywords: appropriation, harmful contamination, peaceful, terraforming
Procedia PDF Downloads 1538023 Identification of Babesia ovis Through Polymerase Chain Reaction in Sheep and Goat in District Muzaffargarh, Pakistan
Authors: Muhammad SAFDAR, Mehmet Ozaslan, Musarrat Abbas Khan
Abstract:
Babesiosis is a haemoparasitic disease due to the multiplication of protozoan’s parasite, Babesia ovis in the red blood cells of the host, and contributes numerous economical losses, including sheep and goat ruminants. The early identification and successful treatment of Babesia Ovis spp. belong to the key steps of control and health management of livestock resources. The objective of this study was to construct a polymerase chain reaction (PCR) based method for the detection of Babesia spp. in small ruminants and to determine the risk factors involved in the spreading of babesiosis infections. A total of 100 blood samples were collected from 50 sheep and 50 goats along with different areas of Muzaffargarh, Pakistan, from randomly selected herds. Data on the characteristics of sheep and goats were collected through questionnaires. Of 100 blood samples examined, 18 were positive for Babesia ovis upon microscopic studies, whereas 11 were positive for the presence of Babesia spp. by PCR assay. For the recognition of parasitic DNA, a set of 500bp oligonucleotide was designed by PCR amplification with sequence 18S rRNA gene for B. ovis. The prevalence of babesiosis in small ruminant’s sheep and goat detected by PCR was significantly higher in female animals (28%) than male herds (08%). PCR analysis of the reference samples showed that the detection limit of the PCR assay was 0.01%. Taken together, all data indicated that this PCR assay was a simple, fast, specific detection method for Babesia ovis species in small ruminants compared to other available methods.Keywords: Babesia ovis, PCR amplification, 18S rRNA, sheep and goat
Procedia PDF Downloads 1268022 Development of Web-Based Iceberg Detection Using Deep Learning
Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith
Abstract:
Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution
Procedia PDF Downloads 918021 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing
Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj
Abstract:
This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano
Procedia PDF Downloads 588020 Contribution of mTOR to Oxidative/Nitrosative Stress via NADPH Oxidase System Activation in Zymosan-Induced Systemic Inflammation in Rats
Authors: Seyhan Sahan-Firat, Meryem Temiz-Resitoglu, Demet Sinem Guden, Sefika Pinar Kucukkavruk, Bahar Tunctan, Ayse Nihal Sari, Zumrut Kocak
Abstract:
We hypothesized that mTOR inhibition may prevent the multiple organ failures following severe multiple tissue injury associated with increased NADPH oxidase system activity occur in zymosan-induced systemic inflammation. Therefore, we investigated the role of mTOR in oxidative/nitrosative stress associated with increase in NADPH oxidase activity in zymosan-induced systemic inflammation model in rats. Male Wistar rats received saline (4 ml/kg, i.p.) and zymosan (500 mg/kg, i.p.) at time 0. Saline, or zymosan-treated rats were given rapamycin (1 mg/kg, i.p.) 1 h after saline or zymosan injections. Rats were sacrified 4 h after zymosan challenge and kidney, heart, thoracic aorta, and superior mesenteric artery were collected. NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels were measured in tissue samples. Zymosan administration caused an increase in NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels in kidney, heart, thoracic aorta, and superior mesenteric artery. These changes caused by zymosan reversed by rapamycin, a selective mTOR inhibitor. Rapamycin alone had no effect on the parameters measured. Our results demonstrated that zymosan-induced oxidative/nitrosative stress presumably due to enhanced activity of NADPH oxidase, expression of p22phox, gp91phox, and p47phox and production of peroxynitrite were mediated by mTOR. [This work was financially supported by Research Foundation of Mersin University (2016-2-AP3-1900)].Keywords: oxidative stress, mTOR, nitrosative stress, zymosan
Procedia PDF Downloads 3148019 Nematicidal Activity of the Cell Extract from Penicillium Sp EU0013 and Its Metabolite Profile Using High Performance Liquid Chromatograpy
Authors: Zafar Iqbal, Sana Irshad Khan
Abstract:
Organic extract from newly isolated plant growth promoting fungus (PGPF) Penicillium sp EU0013 was subjected to bioassays including anti fungal (disc diffusion) cytotoxicity (brine shrimp lethality), herbicidal (Lemna minor) and nematicidal activities. Metabolite profile of the extract was also assessed using HPLC analysis with the aim to identify bioactive natural products in the extract as new drug candidate(s). The extract showed anti fungal potential against tested fungal pathogens. Growth of the Wilt pathogen Fusarium oxyosproum was inhibited up to 63% when compared to negative reference. Activity against brine shrimps was weak and mortality up to 10% was observed at concentration of 200 µg. mL-1. The extract exhibited no toxicity against Lemna minor frond at 200 µg. mL-1. Nematicidal activity was observed very potent against root knot nematode and LC50 value was calculated as 52.5 ug. mL-1 using probit analysis. Methodically assessment of metabolites profile by HPLC showed the presence of kojic acid (Rt 1.4 min) and aflatoxin B1 (Rt 5.9 min) in the mycellial extract as compared with standards. The major unidentified metabolite was eluted at Rt 8.6 along with other minor peaks. The observed high toxicity against root knot nematode was attributed to the unidentified compounds that make fungal extract worthy of further exploration for isolation and structural characterization studies for development of future commercial nematicidal compound(s).Keywords: penicillium, nematicidal activity, metabolites, HPLC
Procedia PDF Downloads 4468018 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 1568017 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 535