Search results for: virtual Machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3970

Search results for: virtual Machine

2080 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 195
2079 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 108
2078 Online Community Suitable for e-Masjid ?

Authors: Norlizam Md Sukiban, Muhammad Faisal Ashaari, Hidayah bt Rahmalan

Abstract:

The role that a mosque or masjid have applied during the life of the Prophet Muhammad (S.A.W) was magnificent. Masjid managed to gather the community in lots of ways. It was the center of the first Islamic community and nation, with greatest triumphs and tragedies. It was a place to accommodate for the community center, homeless refuge, university and mosque all rolled into one. However, the role of masjid applied today was less than the time of the Prophet Muhammad (S.A.W) was alive. The advanced technology such as the internet has a major impact to the community nowadays. For example, community online has been chosen for lots of people to maintain their relationship and suggest various events among the communities members. This study is to investigate the possibility of the role of e-Masjid in adapting the concept of community online in order to remain the role played as such as role of masjid during the lifetime of the Prophet Muhammad (S.A.W). Definition and the characteristic of the online community were listed, along with the benefits of the online community. Later, discussion on the possibility of the online community to be adapted in e-Masjid.

Keywords: e-masjid, online community, virtual community, e-community

Procedia PDF Downloads 495
2077 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 177
2076 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 89
2075 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics

Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu

Abstract:

Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.

Keywords: band alignment, finite state machine, polarization inversion, resistive switching

Procedia PDF Downloads 133
2074 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 166
2073 Multidrug Therapies For HIV: Hybrid On-Off, Hysteresis On-Off Control and Simple STI

Authors: Magno Enrique Mendoza Meza

Abstract:

This paper deals with the comparison of three control techniques: the hysteresis on-off control (HyOOC), the hybrid on-off control (HOOC) and the simple Structured Treatment Interruptions (sSTI). These techniques are applied to the mathematical model developed by Kirschner and Webb. To compare these techniques we use a cost functional that minimize the wild-type virus population and the mutant virus population, but the main objective is to minimize the systemic cost of treatment and maximize levels of healthy CD4+ T cells. HyOOC, HOOC, and sSTI are applied to the drug therapies using a reverse transcriptase and protease inhibitors; simulations show that these controls maintain the uninfected cells in a small, bounded neighborhood of a pre-specified level. The controller HyOOC and HOOC are designed by appropriate choice of virtual equilibrium points.

Keywords: virus dynamics, on-off control, hysteresis, multi-drug therapies

Procedia PDF Downloads 394
2072 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing

Procedia PDF Downloads 116
2071 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 44
2070 Using Information Theory to Observe Natural Intelligence and Artificial Intelligence

Authors: Lipeng Zhang, Limei Li, Yanming Pearl Zhang

Abstract:

This paper takes a philosophical view as axiom, and reveals the relationship between information theory and Natural Intelligence and Artificial Intelligence under real world conditions. This paper also derives the relationship between natural intelligence and nature. According to communication principle of information theory, Natural Intelligence can be divided into real part and virtual part. Based on information theory principle that Information does not increase, the restriction mechanism of Natural Intelligence creativity is conducted. The restriction mechanism of creativity reveals the limit of natural intelligence and artificial intelligence. The paper provides a new angle to observe natural intelligence and artificial intelligence.

Keywords: natural intelligence, artificial intelligence, creativity, information theory, restriction of creativity

Procedia PDF Downloads 385
2069 Design, Shielding and Infrastructure of an X-Ray Diagnostic Imaging Area

Authors: D. Diaz, C. Guevara, P. Rey

Abstract:

This paper contains information about designing, shielding and protocols building in order to avoid ionizing radiation in X-Rays imaging areas as generated by X-Ray, mammography equipment, computed tomography equipment and digital subtraction angiography equipment, according to global standards. Furthermore, tools and elements about infrastructure to improve protection over patients, physicians and staff involved in a diagnostic imaging area are presented. In addition, technical parameters about each machine and the architecture designs and maps are described.

Keywords: imaging area, X-ray, shielding, dose

Procedia PDF Downloads 448
2068 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 338
2067 A Route Guidance System for Car Finding in Indoor Parking Garages

Authors: Pei-Chun Lee, Sheng-Shih Wang

Abstract:

This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.

Keywords: guidance, iBeacon, mobile app, navigation

Procedia PDF Downloads 646
2066 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming

Authors: Rui Li, Min Wen, Kim Bang Salling

Abstract:

For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.

Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance

Procedia PDF Downloads 443
2065 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 360
2064 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject

Authors: Pimploi Tirastittam, Suppara Charoenpoom

Abstract:

Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.

Keywords: blended learning, asynchronous learning, design, process management

Procedia PDF Downloads 407
2063 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 191
2062 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
2061 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, parking guidance, wireless sensor network, ZigBee

Procedia PDF Downloads 575
2060 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method

Authors: Fils Olivier Kamanzi

Abstract:

This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.

Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin

Procedia PDF Downloads 108
2059 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
2058 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 156
2057 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity

Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova

Abstract:

Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.

Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms

Procedia PDF Downloads 71
2056 Contextual Distribution for Textual Alignment

Authors: Yuri Bizzoni, Marianne Reboul

Abstract:

Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.

Keywords: classical receptions, computational linguistics, distributional semantics, Homeric poems, machine translation, translation studies, text alignment

Procedia PDF Downloads 434
2055 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 542
2054 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
2053 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
2052 Short-Term Physiological Evaluation of Augmented Reality System for Thanatophobia Psychotherapy

Authors: Kais Siala, Mohamed Kharrat, Mohamed Abid

Abstract:

Exposure therapies encourage patients to gradually begin facing their painful memories of the trauma in order to reduce fear and anxiety. In this context, virtual reality techniques are widely used for treatment of different kinds of phobia. The particular case of fear of death phobia (thanataphobia) is addressed in this paper. For this purpose, we propose to make a simulation of Near Death Experience (NDE) using augmented reality techniques. We propose in particular to simulate the Out-of-Body experience (OBE) which is the first step of a Near-Death-Experience (NDE). In this paper, we present technical aspects of this simulation as well as short-term impact in terms of physiological measures. The non-linear Poincéré plot is used to describe the difference in Heart Rate Variability between In-Body and Out-Of-Body conditions.

Keywords: Out-of-Body simulation, physiological measure, augmented reality, phobia psychotherapy, HRV, Poincaré plot

Procedia PDF Downloads 307
2051 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 59