Search results for: transient liquid phase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6204

Search results for: transient liquid phase

4314 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan

Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed

Abstract:

This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.

Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis

Procedia PDF Downloads 45
4313 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 28
4312 Experimental Partial Discharge Localization for Internal Short Circuits of Transformers Windings

Authors: Jalal M. Abdallah

Abstract:

This paper presents experimental studies carried out on a three phase transformer to investigate and develop the transformer models, which help in testing procedures, describing and evaluating the transformer dielectric conditions process and methods such as: the partial discharge (PD) localization in windings. The measurements are based on the transfer function methods in transformer windings by frequency response analysis (FRA). Numbers of tests conditions were applied to obtain the sensitivity frequency responses of a transformer for different type of faults simulated in a particular phase. The frequency responses were analyzed for the sensitivity of different test conditions to detect and identify the starting of small faults, which are sources of PD. In more detail, the aim is to explain applicability and sensitivity of advanced PD measurements for small short circuits and its localization. The experimental results presented in the paper will help in understanding the sensitivity of FRA measurements in detecting various types of internal winding short circuits in the transformer.

Keywords: frequency response analysis (FRA), measurements, transfer function, transformer

Procedia PDF Downloads 266
4311 Application of a SubIval Numerical Solver for Fractional Circuits

Authors: Marcin Sowa

Abstract:

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis

Procedia PDF Downloads 190
4310 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan

Procedia PDF Downloads 126
4309 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 215
4308 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading

Authors: W. Badla

Abstract:

A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.

Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions

Procedia PDF Downloads 509
4307 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: polymerase chain reaction, thermal cycles, capillary, TE cooler

Procedia PDF Downloads 434
4306 Operative Technique of Glenoid Anteversion Osteotomy and Soft Tissue Rebalancing for Brachial Plexus Birth Palsy

Authors: Michael Zaidman, Naum Simanovsky

Abstract:

The most of brachial birth palsies are transient. Children with incomplete recovery almost always develop an internal rotation and adduction contracture. The muscle imbalance around the shoulder results in glenohumeral joint deformity and functional limitations. Natural history of glenohumeral deformity is it’s progression with worsening of function. Anteversion glenoid osteotomy with latissimus dorsi and teres major tendon transfers could be an alternative procedure of proximal humeral external rotation osteotomy for patients with severe glenohumeral dysplasia secondary to brachial plexus birth palsy. We will discuss pre-operative planning and stepped operative technique of the procedure on clinical example.

Keywords: obstetric brachial plexus palsy, glenoid anteversion osteotomy, tendon transfer, operative technique

Procedia PDF Downloads 53
4305 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter

Authors: Asma Ben Rhouma, Mahmoud Hamouda

Abstract:

The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.

Keywords: delta inverter, SPWM, simulation, DSP implementation

Procedia PDF Downloads 147
4304 The Role of Smartphones on Iranian Couples' Relationship: An Analysis

Authors: Niloofar Hooman

Abstract:

The present study aims at investigating the positive and negative effects of using Smartphones on couples committed relationships. Despite the fact that many couples may benefit from the positive aspects of Smartphones, it is not clear how their feeling of trust, intimacy and connection in their relationships get affected by Smartphones. This is important as it highlights the ambivalent influences of Smartphones on couple’s relationships. On the one hand, Smartphones can enhance their social and emotional interactions and on the other hand, they can cause mistrust and isolation between them. Trust, intimacy and honesty are of important factors through which a stable relationship can be constructed. Nevertheless, some characteristics of Smartphones such as being fluid and personalized can harm the relationship and consequently destroy it. Thus, it is necessary to investigate how Iranian couples in committed relationships use Smartphone to manage their relationship and how couples feel Smartphone have enhanced or detracted a sense of trust, intimacy and connection with their partner? In the first phase of the study, in-depth-interview will be conducted with 30 couples and data will be analyzed using NVIVO software. In the next phase of the study, 1500 participants aged 20 and above will be selected based on cluster sampling. Data will be analyzed both qualitatively and quantitatively.

Keywords: couple, family, internet, intimacy, Smartphone, trust

Procedia PDF Downloads 373
4303 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 386
4302 Effect of Functional Group Position in Co-Formers and Solvent on Cocrystal Polymorphism/Stoichiomorphism: A Case Study

Authors: Luguang Qi, Chuang Xie

Abstract:

In recent years, there has been an increase in the number of reports on cocrystal polymorphism and stoichiomorphism. However, the research on the factors that influence these phenomena is limited. Herein, picolinamide (PAM), nicotinamide (NAM), and isonicotinamide (INA) were selected as co-formers to form multicomponent solids with 4-chloro-3-sulfamoylbenzoic acid (CSBA). Six new cocrystal forms of CSBA were discovered, and their crystal structures were determined. It was found that PAM and NAM can only form one cocrystal with CSBA, while INA can form up to four cocrystals, including both cocrystal polymorphism and stoichiomorphism. Molecular electrostatic potential analysis and crystal structure analysis showed that the functional group position of PAM limited the diversity of cocrystal synthons, while the lattice energy limited the diversity of cocrystal synthons when NAM acted as a co-former. Only INA was not subject to these restrictions when forming cocrystals. Finally, the influence of solvents on cocrystals was illustrated by determining the ternary phase diagrams. The mechanism of two similar solvents, ethyl acetate, and acetone, controlling the crystallization of cocrystal polymorphism was analyzed by molecular simulations.

Keywords: cocrystal polymorphism, cocrystal stoichiomorphism, phase diagram, molecular simulation

Procedia PDF Downloads 57
4301 Remembering and Forgetting in Shakespeare Sonnets

Authors: Nasreddin Bushra Ahmed

Abstract:

Humans use language to externalize their mental perceptions and conceptions and thereby set up an interdependent consciousness about the concrete and abstract spheres of their existence. Language also represents a recording device whereby they capture the transient moment in their lives. Literature with it its various manifestations help keep the individual and collective memories alive. Works of the English literature’s prototypical figure, William Shakespeare provides the best illustration of this fact. Shakespeare’s sonnets abound in prescient insights about the intricacies of human relations. Though they have been the concern of scholars’ investigations for centuries, many of their thematic potentialities are yet to be tapped. The present study aspires to highlight the theme of remembering and forgetting in some of these sonnets as reverse faces of the same coin. Using close reading it is intended to demonstrate how Shakespeare, through imagery and literary tropes, plays with the issues of mortality and immortality, and how he has reaffirmed that literature can provide a locus for perennial presence despite the temporariness of individuals’ existence.

Keywords: forgetting, immortality, literature, remembering, Shakespeare, sonnet

Procedia PDF Downloads 348
4300 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 131
4299 STEAM and Project-Based Learning: Equipping Young Women with 21st Century Skills

Authors: Sonia Saddiqui, Maya Marcus

Abstract:

UTS STEAMpunk Girls is an educational program for young women (aged 12-16), to empower them to be more informed and active members of the 21st century workforce. With the number of STEM graduates on the decline, especially among young women, an additional aim of the program is to trial a STEAM (Science, Technology, Engineering, Arts/Humanities/Social Sciences, Mathematics), inter-disciplinary approach to improving STEM engagement. In-line with UNESCO’s recent focus on promoting ‘transversal competencies’ in future graduates, the program utilised co-design, project-based learning, entrepreneurial processes, and inter-disciplinary learning. The program consists of two phases. Taking a participatory design approach, the first phase (co-design workshops) provided valuable insight into student perspectives around engaging young women in STEM and inter-disciplinary thinking. The workshops positioned 26 young women from three schools as subject matter experts (SMEs), providing a platform for them to share their opinions, experiences and findings around the STEAM disciplines. The second (pilot) phase put the co-design phase findings into practice, with 64 students from four schools working in groups to articulate problems with real-world implications, and utilising design-thinking to solve them. The pilot phase utilised project-based learning to engage young women in entrepreneurial and STEAM frameworks and processes. Scalable program design and educational resources were trialed to determine appropriate mechanisms for engaging young women in STEM and in STEAM thinking. Across both phases, data was collected via longitudinal surveys to obtain pre-program, baseline attitudinal information, and compare that against post-program responses. Preliminary findings revealed students’ improved understanding of the STEM disciplines, industries and professions, improved awareness of STEAM as a concept, and improved understanding regarding inter-disciplinary and design thinking. Program outcomes will be of interest to high-school educators in both STEM and the Arts, Humanities and Social Sciences fields, and will hopefully inform future programmatic approaches to introducing inter-disciplinary STEAM learning in STEM curriculum.

Keywords: co-design, STEM, STEAM, project-based learning, inter-disciplinary

Procedia PDF Downloads 187
4298 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 353
4297 Effect of Arch-Wire Qualities and Bracket Design on the Force Systems during Sliding Mechanics

Authors: Davender Kumar

Abstract:

Aim: It is important for the orthodontist to be familiar with the sliding resistance (SR) generated by the ligation method used during the space closure phase with sliding mechanics. To determine new, experimental non-conventional (slide) ligature demonstrates less friction in vitro when compared other ligatures on the market. Methods: Experimental in vitro were carried out to test the performance of the low-friction system with regard to assess the forces released by different bracket–ligature systems with bonded in iron plate mounted on an Instron machine. Results: The outcomes of experimental testing showed that the combination of the low-friction ligatures with the super elastic nickel-titanium and SS wires produced a significantly smaller amount of binding at the bracket/arch wire/ligature unit when compared to conventional elastomeric ligatures. Conclusion: The biomechanical consequences of the use of low-friction ligatures were shorter duration of orthodontic treatment during the levelling and aligning phase, concurrent dentoalveolar expansion of the dental arch, and the possibility of using biologically adequate orthodontic forces.

Keywords: archwire, bracket, friction, ligation

Procedia PDF Downloads 305
4296 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 98
4295 Implementation of a Lattice Boltzmann Method for Multiphase Flows with High Density Ratios

Authors: Norjan Jumaa, David Graham

Abstract:

We present a Lattice Boltzmann Method (LBM) for multiphase flows with high viscosity and density ratios. The motion of the interface between fluids is modelled by solving the Cahn-Hilliard (CH) equation with LBM. Incompressibility of the velocity fields in each phase is imposed by using a pressure correction scheme. We use a unified LBM approach with separate formulations for the phase field, the pressure less Naiver-Stokes (NS) equations and the pressure Poisson equation required for correction of the velocity field. The implementation has been verified for various test case. Here, we present results for some complex flow problems including two dimensional single and multiple mode Rayleigh-Taylor instability and we obtain good results when comparing with those in the literature. The main focus of our work is related to interactions between aerated or non-aerated waves and structures so we also present results for both high viscosity and low viscosity waves.

Keywords: lattice Boltzmann method, multiphase flows, Rayleigh-Taylor instability, waves

Procedia PDF Downloads 223
4294 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview

Authors: Andres Diaz Garcia

Abstract:

The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.

Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process

Procedia PDF Downloads 104
4293 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: innovation, triple helix, poultry farms, biosecurity

Procedia PDF Downloads 270
4292 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 419
4291 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel

Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana

Abstract:

The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.

Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength

Procedia PDF Downloads 241
4290 Chronolgy and Developments in Inventory Control Best Practices for FMCG Sector

Authors: Roopa Singh, Anurag Singh, Ajay

Abstract:

Agriculture contributes a major share in the national economy of India. A major portion of Indian economy (about 70%) depends upon agriculture as it forms the main source of income. About 43% of India’s geographical area is used for agricultural activity which involves 65-75% of total population of India. The given work deals with the Fast moving Consumer Goods (FMCG) industries and their inventories which use agricultural produce as their raw material or input for their final product. Since the beginning of inventory practices, many developments took place which can be categorised into three phases, based on the review of various works. The first phase is related with development and utilization of Economic Order Quantity (EOQ) model and methods for optimizing costs and profits. Second phase deals with inventory optimization method, with the purpose of balancing capital investment constraints and service level goals. The third and recent phase has merged inventory control with electrical control theory. Maintenance of inventory is considered negative, as a large amount of capital is blocked especially in mechanical and electrical industries. But the case is different in food processing and agro-based industries and their inventories due to cyclic variation in the cost of raw materials of such industries which is the reason for selection of these industries in the mentioned work. The application of electrical control theory in inventory control makes the decision-making highly instantaneous for FMCG industries without loss in their proposed profits, which happened earlier during first and second phases, mainly due to late implementation of decision. The work also replaces various inventories and work-in-progress (WIP) related errors with their monetary values, so that the decision-making is fully target-oriented.

Keywords: control theory, inventory control, manufacturing sector, EOQ, feedback, FMCG sector

Procedia PDF Downloads 341
4289 Software Engineering Inspired Cost Estimation for Process Modelling

Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller

Abstract:

Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.

Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO

Procedia PDF Downloads 425
4288 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow

Procedia PDF Downloads 312
4287 Effects of Smoking on the Indoor Air Quality and COVID-19

Authors: Sonam Sandal, Susan Verghese P.

Abstract:

The phrase "environmental tobacco smoke" (ETS) refers to exposure to tobacco smoke that isn't from your own smoking but instead is caused by being in close proximity to someone else's cigar, cigarette, or pipe smoke. Environmental cigarette smoke is one of the main contributors to indoor air pollution (IAP), which is exceedingly harmful to human health and results in millions of deaths each year, according to the World Health Organization. Sidestream smoke (SS), which is discharged from a cigarette's burning end in between puffs, is the primary cause of ETS. The bulk of the ETS residue is composed of gases that are produced while smoking through the cigarette paper, mainstream smoke (MS) ingested, and side stream smoke emitted while inhaling a puff from the burning end. Each of these mixtures—SS, ETS, and MS—is an aerosol composed of an IAP-causing vapor phase and a particle phase. Therefore, indoor air-cleaning equipment designed to remove particles will not significantly alter nicotine exposure but will alter the concentrations of other dangerous substances, including particulate matter (PM), PM 2.5, and PM 10. In conclusion, indoor airborne contaminants pose serious risks to human health. ETS degrades the air quality, and when someone breathes this bad air, it weakens their lungs and makes them more susceptible to COVID-19.

Keywords: pm 10, covid-19, indoor air pollution, cigarette smoke., pm 2.5

Procedia PDF Downloads 54
4286 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 155
4285 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 330