Search results for: tuning of process parameters
3112 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix
Authors: Kotchamon Yodkhum, Thawatchai Phaechamud
Abstract:
Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.Keywords: chitosan, aluminum monostearate, dispersion, controlled-release
Procedia PDF Downloads 3943111 A Preliminary Comparative Study Between the United Kingdom and Taiwan: Public Private Collaboration and Cooperation in Tackling Large Scale Cyberattacks
Authors: Chi-Hsuan Cheng
Abstract:
This research aims to evaluate public-private partnerships against cyberattacks by comparing the UK and Taiwan. First, the study analyses major cyberattacks and factors influencing cybersecurity in both countries. Second, it assesses the effectiveness of current cyber defence strategies in combating cyberattacks by comparing the approaches taken in the UK and Taiwan, while also evaluating the cyber resilience of both nations. Lastly, the research evaluates existing public-private partnerships by comparing those in the UK and Taiwan, and proposes recommendations for enhancing cooperation and collaboration mechanisms in tackling cyberattacks. Grounded theory serves as the core research method. Theoretical sampling is used to recruit participants in both the UK and Taiwan, including investigators, police officers, and professionals from cybersecurity firms. Semi-structured interviews are conducted in English in the UK and Mandarin in Taiwan, recorded with consent, and pseudonymised for privacy. Data analysis involves open coding, grouping excerpts into codes, and categorising codes. Axial coding connects codes into categories, leading to the development of a codebook. The process continues iteratively until theoretical saturation is reached. Finally, selective coding identifies the core topic, evaluating public-private cooperation against cyberattacks and its implications for social and policing strategies in the UK and Taiwan, which highlights the current status of the cybersecurity industry, governmental plans for cybersecurity, and contributions to cybersecurity from both government sectors and cybersecurity firms, with a particular focus on public-private partnerships. In summary, this research aims to offer practical recommendations to law enforcement, private sectors, and academia for reflecting on current strategies and tailoring future approaches in cybersecurityKeywords: cybersecurity, cybercrime, public private partnerships, cyberattack
Procedia PDF Downloads 753110 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion
Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng
Abstract:
Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index
Procedia PDF Downloads 833109 Employability Potential of Differently Abled in the Indian Apparel Industry
Authors: Gunjita Shami, Noopur Anand
Abstract:
The pilot run of 50 days was undertaken to test employability potential of people with visual and hearing & speech impairment. Various roles in an apparel manufacturing set up like spreading of fabric for cutting, folding, sealing and labeling cartons, pasting size barcode stickers on packed garments, removing tickets from the garments in the finishing stage were studied. Their performance was quantified basis timesheets for all the days and improvement per day was quantified. Their final day output was compared to that of the able-bodied worker. For example in the carton making activity on day one visually impaired worker was making one box every three minutes which improved to four boxes per minute on day 28 displaying 91.6% improvement compared or an improvement of 3.6% per day which was comparable to the able-bodied seasoned workers, who were making 5 boxes per minute. The performance of persons with hearing and speech impairment in the finishing department was 10% higher than that of able-bodied seasoned workers in the same process. Overall in all the activities the differently abled showed day to day improvement of 65% while able bodied displayed improvement of 52%. On the first day performance of able-bodied worker was 75% better than that of differently abled while on the 50th day it was only 20% better. Therefore the performance of persons with disabilities was found comparable to the able bodied person. The results, though on a small scale, showed a big promise of employment of persons with disability in the apparel industry. Armed with the promising result a full-scale study has been undertaken to identify the roles suitable for certain kind of disability in apparel production, work-aids required to assist the differently abled to improve performance and measures to be undertaken to make production floor 'friendlier' for them. The results have been discussed in this paper which opens doors for integrating differently abled into the world projected and assumed for only able-bodied.Keywords: apparel sector, differently abled, employability, performance, work-aid
Procedia PDF Downloads 1493108 Repeated Batch Cultivation: A Novel Empty and Fill Strategy for the Enhanced Production of a Biodegradable Polymer, Polyhydroxy Alkanoate by Alcaligenes latus
Authors: Geeta Gahlawat, Ashok Kumar Srivastava
Abstract:
In the present study, a simple drain and fill protocol strategy of repeated batch was adopted for enhancement in polyhydroxyalkanoates (PHAs) production using alcaligenes latus DSM 1124. Repeated batch strategy helped in increasing the longevity of otherwise decaying culture in the bioreactor by supplementing fresh substrates during each cycle of repeated-batch. The main advantages of repeated batch are its ease of operation, enhancement of culture stability towards contamination, minimization of pre-culture effects and maintenance of organism at high growth rates. The cultivation of A. latus was carried out in 7 L bioreactor containing 4 L optimized nutrient medium and a comparison with the batch mode fermentation was done to evaluate the performance of repeated batch in terms of PHAs accumulation and productivity. The statistically optimized medium recipe consisted of: 25 g/L Sucrose, 2.8 g/L (NH4)2SO4, 3.25 g/L KH2PO4, 3.25 g/L Na2HPO4, 0.2 g/L MgSO4, 1.5 mL/L trace element solution. In this strategy, 20% (v/v) of the culture broth was removed from the reactor and supplemented with an equal volume of fresh medium when sucrose concentration inside the reactor decreased below 8 g/L. The fermenter was operated for three repeated batch cycles and fresh nutrient feeding was done at 27 h, 48 h, and 60 h. Repeated batch operation resulted in a total biomass of 27.89 g/L and PHAs concentration 20.55 g/L at the end of 69 h which was a marked improvement as compared to batch cultivation (8.71 g/L biomass and 6.24 g/L PHAs). This strategy demonstrated 3.3 fold and 1.8 fold increase in PHAs concentration and volumetric productivity, respectively as compared to batch cultivation. Repeated batch cultivation strategy had also the benefit of avoiding non-productive time period required for cleaning, refilling and sterilization of bioreactor, thereby increasing the overall volumetric productivity and making the entire process cost-effective too.Keywords: alcaligenes, biodegradation, polyhydroxyalkanoates, repeated batch
Procedia PDF Downloads 3693107 Enabling Translanguaging in the EFL Classroom, Affordances of Learning and Reflections
Authors: Nada Alghali
Abstract:
Translanguaging pedagogy suggests a new perspective in language education relating to multilingualism; multilingual learners have one linguistic repertoire and not two or more separate language systems (García and Wei, 2014). When learners translanguage, they are able to draw on all their language features in a flexible and integrated way (Otheguy, García, & Reid, 2015). In the Foreign Language Classroom, however, the tendency to use the target language only is still advocated as a pedagogy. This study attempts to enable learners in the English as a foreign language classroom to draw on their full linguistic repertoire through collaborative reading lessons. In observations prior to this study, in a classroom where English only policy prevails, learners still used their first language in group discussions yet were constrained at times by the teacher’s language policies. Through strategically enabling translanguaging in reading lessons (Celic and Seltzer, 2011), this study has revealed that learners showed creative ways of language use for learning and reflected positively on thisexperience. This case study enabled two groups in two different proficiency level classrooms who are learning English as a foreign language in their first year at University in Saudi Arabia. Learners in the two groups wereobserved over six weeks and wereasked to reflect their learning every week. The same learners were also interviewed at the end of translanguaging weeks after completing a modified model of the learning reflection (Ash and Clayton, 2009). This study positions translanguaging as collaborative and agentive within a sociocultural framework of learning, positioning translanguaging as a resource for learning as well as a process of learning. Translanguaging learning episodes are elicited from classroom observations, artefacts, interviews, reflections, and focus groups, where they are analysed qualitatively following the sociocultural discourse analysis (Fairclough &Wodak, 1997; Mercer, 2004). Initial outcomes suggest functions of translanguaging in collaborative reading tasks and recommendations for a collaborative translanguaging pedagogy approach in the EFL classroom.Keywords: translanguaging, EFL, sociocultural theory, discourse analysis
Procedia PDF Downloads 1803106 Adaptability of Steel-Framed Industrialized Building System
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.Keywords: adaptability, durability, open building, service life, structural building system
Procedia PDF Downloads 3663105 A Study of Industrial Symbiosis and Implementation of Indigenous Circular Economy Technique on an Indian Industrial Area
Authors: A. Gokulram
Abstract:
Industrial waste is often categorized as commercial and non-commercial waste by market value. In many Indian industries and other industrialized countries, the commercial value waste is capitalized and non-commercial waste is dumped to landfill. A lack of adequate research on industrial waste leads to the failure of effective resource management and the non-commercial waste are being considered as commercially non-viable residues. The term Industrial symbiosis refers to the direct inter-firm reuse or exchange of material and energy resource. The resource efficiency of commercial waste is mainly followed by an informal symbiosis in our research area. Some Industrial residues are reused within the facility where they are generated, others are reused directly nearby industrial facilities and some are recycled via the formal and informal market. The act of using industrial waste as a resource for another product faces challenges in India. This research study has observed a major negligence of trust and communication among several bodies to implement effective circular economy in India. This study applies interviewing process across researchers, government bodies, industrialist and designers to understand the challenges of circular economy in India. The study area encompasses an industrial estate in Ahmedabad in the state of Gujarat which comprises of 1200 industries. The research study primarily focuses on making industrial waste as commercial ready resource and implementing Indigenous sustainable practice in modern context to improve resource efficiency. This study attempted to initiate waste exchange platform among several industrialist and used varied methodologies from mail questionnaire to telephone survey. This study makes key suggestions to policy change and sustainable finance to improve circular economy in India.Keywords: effective resource management, environmental policy, indigenous technique, industrial symbiosis, sustainable finance
Procedia PDF Downloads 1353104 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel
Authors: Changyeop Lee, Sewon Kim, Jongho Lee
Abstract:
Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.Keywords: NOx, CO, reburning, pollutant
Procedia PDF Downloads 2883103 Adsorption of Atmospheric Gases Using Atomic Clusters
Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko
Abstract:
First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.Keywords: catalyst, gaussian, nanoparticles, oxidation
Procedia PDF Downloads 953102 Development of Electric Generator and Water Purifier Cart
Authors: Luisito L. Lacatan, Gian Carlo J. Bergonia, Felipe C. Buado III, Gerald L. Gono, Ron Mark V. Ortil, Calvin A. Yap
Abstract:
This paper features the development of a Mobile Self-sustaining Electricity Generator for water distillation process with MCU- based wireless controller & indicator designed to solve the problem of scarcity of clean water. It is a fact that pure water is precious nowadays and its value is more precious to those who do not have or enjoy it. There are many water filtration products in existence today. However, none of these products fully satisfies the needs of families needing clean drinking water. All of the following products require either large sums of money or extensive maintenance, and some products do not even come with a guarantee of potable water. The proposed project was designed to alleviate the problem of scarcity of potable water in the country and part of the purpose was also to identify the problem or loopholes of the project such as the distance and speed required to produce electricity using a wheel and alternator, the required time for the heating element to heat up, the capacity of the battery to maintain the heat of the heating element and the time required for the boiler to produce a clean and potable water. The project has three parts. The first part included the researchers’ effort to plan every part of the project from the conversion of mechanical energy to electrical energy, from purifying water to potable drinking water to the controller and indicator of the project using microcontroller unit (MCU). This included identifying the problem encountered and any possible solution to prevent and avoid errors. Gathering and reviewing related studies about the project helped the researcher reduce and prevent any problems before they could be encountered. It also included the price and quantity of materials used to control the budget.Keywords: mobile, self – sustaining, electricity generator, water distillation, wireless battery indicator, wireless water level indicator
Procedia PDF Downloads 3103101 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River
Authors: Zhaocheng Shang
Abstract:
In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".Keywords: blue-green landscape network, city crossing river, four-dimensional analysis method, planning order
Procedia PDF Downloads 1593100 Teaching English for Specific Purposes to Business Students through Social Media
Authors: Candela Contero Urgal
Abstract:
Using realia to teach English for Specific Purposes (ESP) is a must, as it is thought to be designed to meet the students’ real needs in their professional life. Teachers are then expected to offer authentic materials and set students in authentic contexts where their learning outcomes can be highly meaningful. One way of engaging students is using social networks as a way to bridge the gap between their everyday life and their ESP learning outcomes. It is in ESP, particularly in Business English teaching, that our study focuses, as the ongoing process of digitalization is leading firms to use social media to communicate with potential clients. The present paper is aimed at carrying out a case study in which different digital tools are employed as a way to offer a collection of formats businesses are currently using so as to internationalize and advertise their products and services. A secondary objective of our study will then be to progress on the development of multidisciplinary competencies students are to acquire during their degree. A two-phased study will be presented. The first phase will cover the analysis of course tasks accomplished by undergraduate students at the University of Cadiz (Spain) in their third year of the Degree in Business Management and Administration by comparing the results obtained during the years 2019 to 2021. The second part of our study will present a survey conducted to these students in 2021 and 2022 so as to verify their interest in learning new ways to digitalize as well as internationalize their future businesses. Findings will confirm students’ interest in working with updated realia in their Business English lessons, as a consequence of their strong belief in the necessity to have authentic contexts and didactic resources. Despite the limitations social media can have as a means to teach business English, students will still find it highly beneficial since it will foster their familiarisation with the digital tools they will need to use when they get to the labour market.Keywords: English for specific purposes, business English, internationalization of higher education, foreign language teaching
Procedia PDF Downloads 1153099 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1423098 Assessment of Biotic and Abiotic Water Factors of Antiao and Jiabong Rivers for Benthic Algae
Authors: Geno Paul S. Cumla, Jan Mariel M. Gentiles, M. Brenda Gajelan-Samson
Abstract:
Eutrophication is a process where in there is a surplus of nutrients present in a lake or river. Harmful cyanobacteria, hypoxia, and primarily algae, which contain toxins, grow because of the excess nutrients. Algal blooms can cause fish kills, limiting the light penetration which reduces growth of aquatic organisms, causing die-offs of plants and produce conditions that are dangerous to aquatic and human life. The main cause for eutrophication is the presence of excessive amounts of phosphorus (P) and nitrogen (N). Nitrogen is necessary for the production of the plant tissues and is usually used to synthesize proteins. Nitrate is a compound that contains nitrogen, and at elevated levels it can cause harmful effects. Excessive amounts of phosphorus, displaced through human activity, is the major cause of algae growth and as well as degraded water quality. To accomplish this study the Assessment of Soluble inorganic nitrogen (SIN), Assessment of Soluble reactive phosphate (SRP), Determination of Chlorophyll a (Chl-a) concentration, and Determination of Dominating Taxa were done. The study addresses the high probability of algal blooms in Maqueda Bay by assessing the biotic and abiotic factors of Antiao and Jiabong rivers. The data predicts the overgrowth of algae and to create awareness to prevent the event from taking place. The study assesses the adverse effects that could be prevented by understanding and controlling algae. This should predict future cases of algal blooms and allow government agencies which require data to create programs to prevent and assess these issues.Keywords: eutrophication, chlorophyll a, nitrogen, phosphorus, red tide, Kjeldahl method, spectrophotometer, assessment of soluble inorganic nitrogen, SIN, assessment of soluble reactive phosphate, SRP
Procedia PDF Downloads 1433097 Using Short Learning Programmes to Develop Students’ Digital Literacies in Art and Design Education
Authors: B.J. Khoza, B. Kembo
Abstract:
Global socioeconomic developments and ever-growing technological advancements of the art and design industry indicate the pivotal importance of lifelong learning. There exists a discrepancy between competencies, personal ambition, and workplace requirements. There are few , if at all, institutions of higher learning in South Africa which offer Short Learning Programmes (SLP) in Art and Design Education. Traditionally, Art and Design education is delivered face to face via a hands-on approach. In this way the enduring perception among educators is that art and design education does not lend itself to online delivery. Short Learning programmes (SLP) are a concentrated approach to make revenue and lure potential prospective students to embark on further education study, this is often of weighted value to both students and employers. SLPs are used by Higher Education institutions to generate income in support of the core academic programmes. However, there is a gap in terms of the translation of art and design studio pedagogy into SLPs which provide quality education, are adaptable and delivered via a blended mode. In our paper, we propose a conceptual framework drawing on secondary research to analyse existing research to SLPs for arts and design education. We aim to indicate a new dimension to the process of using a design-based research approach for short learning programmes in art and design education. The study draws on a conceptual framework, a qualitative analysis through the lenses of Herrington, McKenney, Reeves and Oliver (2005) principles of the design-based research approach. The results of this study indicate that design-based research is not only an effective methodological approach for developing and deploying arts and design education curriculum for 1st years in Higher Education context but it also has the potential to guide future research. The findings of this study propose that the design-based research approach could bring theory and praxis together regarding a common purpose to design context-based solutions to educational problems.Keywords: design education, design-based research, digital literacies, multi-literacies, short learning programme
Procedia PDF Downloads 1643096 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion
Authors: J. H. Park, R. H. Hwang, K. B. Yi
Abstract:
Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method
Procedia PDF Downloads 2093095 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India
Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra
Abstract:
Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate
Procedia PDF Downloads 1273094 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon
Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam
Abstract:
Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index
Procedia PDF Downloads 873093 Exploring the Aesthetics of Sexual Violence in Therese Park’s ‘A Gift of the Emperor’: A Brief Study on Korean Comfort Women
Authors: Khushboo Verma
Abstract:
The use of rape as a weapon of war has been in existence for as early as the middle ages. Women, during the conflict, have been treated as the spoils of war, a reward for the conquering soldiers granted to them by their superiors which is, arguably, most often overlooked as part of the collateral damage that is unavoidable in conflict zones. Korean-born Therese Park’s first novel, A Gift of the Emperor (1997), describes one such atrocious incidence wherein she highlights the active role the Japanese military played in procuring and condoning trafficking of women, who were euphemistically referred to as ‘comfort women’, for prostitution during World War II. This paper thus aims to look at the remembering and reckonings of these women, which fueled a range of creative gestures in the artistic representations and knowledge production by Korean American artists and writers. The essay divides into three parts wherein first it tries to highlight the relationship of the state and the self in relation to the ‘comfort women’ as to who bears the onus of the exploitation of these women, or the responsibility for the redressal with the present-day notions of human rights as studied through Ueno Chizuko’s ‘The Politics of Memory: Nation, Individual and Self’ (1999). There are several narratological elements of the text that are of interest here which shall be viewed and analysed throughout the paper as well. The second part of the paper talks about the aesthetics of rape and sexual violence as represented or (mis)represented by Park in her novel as she attempts to give voice to the victim and retain her and her suffering as the central focus of the narrative. Finally, the third part of the novel explores as well as places the novel in the context of debates over the highly contested issue of ‘comfort women’ and the actual ‘comfort women’ survivors’ testimonies. For this purpose, the present study focuses on Dori Laub’s ‘Truth and Testimony: The Process and the Struggle’ (1991).Keywords: Korean comfort women, survivors’ testimonies, sexual slavery, aesthetics of sexual violence, horrible memories
Procedia PDF Downloads 1593092 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs
Authors: Anna Costanza Russo, Daniele Landi, Michele Germani
Abstract:
Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping
Procedia PDF Downloads 2513091 Development of Automated Quality Management System for the Management of Heat Networks
Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov
Abstract:
Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets
Procedia PDF Downloads 3673090 Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System
Authors: Rachmat Mauludin, Novita R. Kusuma, Diky Mudhakir
Abstract:
Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively.Keywords: solid lipid nanoparticle (SLN), famotidine (FMT), physicochemical properties, release study
Procedia PDF Downloads 3603089 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials
Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza
Abstract:
The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.Keywords: rice husk, banana stem, bioenergy, renewable feedstock
Procedia PDF Downloads 2793088 Interlingual Melodious Constructions: Romanian Translation of References to Songs in James Joyce’s Ulysses
Authors: Andra-Iulia Ursa
Abstract:
James Joyce employs several unconventional stylistic features in this landmark novel meant to experiment with language. The episode known as “Sirens” is entirely conceived around music and linguistic structures subordinated to sound. However, the aspiration to the condition of music is reflected throughout this entire literary work, as musical effects are echoed systematically. The numerous melodies scattered across the narrative play an important role in enhancing the thoughts and feelings that pass through the minds of the characters. Often the lyrics are distorted or interweaved with other words, preoccupations or memories, intensifying the stylistic effect. The Victorian song “Love’s old sweet song” is one of the most commonly referred to and meaningful musical allusions in Ulysses, becoming a leitmotif of infidelity. The lyrics of the song “M’appari”, from the opera “Martha”, are compared to an event from Molly and Bloom’s romantic history. Moreover, repeated phrases using words from “The bloom is on the rye” or “The croppy boy” serve as glances into the minds of the characters. Therefore, the central purpose of this study is to shed light on the way musical allusions flit through the episodes from the point of view of the stream of consciousness technique and to compare and analyse how these constructions are rendered into Romanian. Mircea Ivănescu, the single Romanian translator who succeeded in carrying out the translation of the entire ‘stylistic odyssey’, received both praises and disapprovals from the critics. This paper is not meant to call forth eventual flaws of the Romanian translation, but rather to elaborate the complexity of the task. Following an attentive examination and analysis of the two texts, from the point of view of form and meaning of the references to various songs, the conclusions of this study will be able to point out the intricacies of the process of translation.Keywords: Joyce, melodious constructions, stream of consciousness, style, translation
Procedia PDF Downloads 1643087 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces
Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic
Abstract:
Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.Keywords: contact time, impact dynamics, oscillation, pear-shape droplet
Procedia PDF Downloads 4543086 Biogas Production from Lake Bottom Biomass from Forest Management Areas
Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen
Abstract:
In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment
Procedia PDF Downloads 3333085 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future
Authors: Gabriel Wainer
Abstract:
Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation
Procedia PDF Downloads 3233084 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold
Authors: Morteza Malek Yarand, Hadi Saebi Monfared
Abstract:
This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon
Procedia PDF Downloads 2733083 A Study on Utilizing Temporary Water Treatment Facilities to Tackle Century-Long Drought and Emergency Water Supply
Authors: Yu-Che Cheng, Min-Lih Chang, Ke-Hao Cheng, Chuan-Cheng Wang
Abstract:
Taiwan is an island located along the southeastern coast of the Asian continent, located between Japan and the Philippines. It is surrounded by the sea on all sides. However, due to the presence of the Central Mountain Range, the rivers on the east and west coasts of Taiwan are relatively short. This geographical feature results in a phenomenon where, despite having rainfall that is 2.6 times the world average, 58.5% of the rainwater flows into the ocean. Moreover, approximately 80% of the annual rainfall occurs between May and October, leading to distinct wet and dry periods. To address these challenges, Taiwan relies on large reservoirs, storage ponds, and groundwater extraction for water resource allocation. It is necessary to construct water treatment facilities at suitable locations to provide the population with a stable and reliable water supply. In general, the construction of a new water treatment plant requires careful planning and evaluation. The process involves acquiring land and issuing contracts for construction in a sequential manner. With the increasing severity of global warming and climate change, there is a heightened risk of extreme hydrological events and severe water situations in the future. In cases of urgent water supply needs in a region, relying on traditional lengthy processes for constructing water treatment plants might not be sufficient to meet the urgent demand. Therefore, this study aims to explore the use of simplified water treatment procedures and the construction of rapid "temporary water treatment plants" to tackle the challenges posed by extreme climate conditions (such as a century-long drought) and situations where water treatment plant construction cannot keep up with the pace of water source development.Keywords: temporary water treatment plant, emergency water supply, construction site groundwater, drought
Procedia PDF Downloads 88