Search results for: thin plate
130 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India
Authors: Priyanka Mazumdar, Ananya Mukhopadhyay
Abstract:
A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence
Procedia PDF Downloads 269129 Bioefficacy of Ocimum sanctum on Reproductive Performance of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoriedae)
Authors: Kamal Kumar Gupta, Sunil Kayesth
Abstract:
Dysdercus koenigii is serious pest of cotton and other malvaceous crop. Present research work aimed at ecofriendly approach for management of pest by plant extracts. The impact of Ocimum sanctum was studied on reproductive performance of Dysdercus koenigii. The hexane extract of Ocimum leaves was prepared by ‘cold extraction method’. The newly emerged fifth instar nymphs were exposed to the extract of concentrations ranging from 0.1% to 0.00625% by ‘thin film residual method’ for a period of 24h. Reproductive fitness of the adults emerged from the treated nymphs was evaluated by assessing their courtship behaviour, oviposition behaviour, and fertility. The studies indicated that treatment of Dysdercus with the hexane extract of Ocimum altered their courtship behaviour. Consequently, the treated males exhibited less sexual activity, performed fewer mounting attempts, increased time to mate and showed decreased percent successful mating. The females often rejected courting treated male by shaking the abdomen. Similarly, the treated females in many cases remained non-receptive to the courting male. Premature termination of mating in the mating pairs prior to insemination further decreased the mating success of the treated adults. Maximum abbreviation of courtship behaviour was observed in the experimental set up where both the males and the females were treated. Only females which mate successfully were observed for study of oviposition behaviour. The treated females laid lesser number of egg batches and eggs in their life span. The eggs laid by these females were fertile indicating insemination of the female. However, percent hatchability was lesser than control. The effects of hexane extract were dose dependent. Treatment with 0.1% and 0.05% extract altered courtship behaviour. Doses of concentrations less than 0.05% did not affect courtship behaviour but altered the oviposition behaviour and fertility. Significant reduction in the fecundity and fertility was observed in the treatments at concentration as low as 0.00625%. The GCMS analysis of the extract revealed a plethora of phytochemicals including juvenile hormone mimics, and the intermediates of juvenile hormone biosynthesis. Therefore, some of these compounds individually or synergistically impair reproductive behaviour of Dysdercus. Alteration of courtship behaviour and suppression of fecundity and fertility with the help of plant extracts has wide potentials in suppression of pest population and ‘integrated pest management’.Keywords: courtship behaviour, Dysdercus koenigii, Ocimum sanctum, oviposition behaviour
Procedia PDF Downloads 267128 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety
Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar
Abstract:
The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality
Procedia PDF Downloads 158127 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits
Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay
Abstract:
Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I
Procedia PDF Downloads 306126 Quantification of Lawsone and Adulterants in Commercial Henna Products
Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen
Abstract:
The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone
Procedia PDF Downloads 460125 Development and Characterization of Novel Topical Formulation Containing Niacinamide
Authors: Sevdenur Onger, Ali Asram Sagiroglu
Abstract:
Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.Keywords: delivery systems, hyperpigmentation, liposome, niacinamide
Procedia PDF Downloads 112124 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 122123 Convective Boiling of CO₂/R744 in Macro and Micro-Channels
Authors: Adonis Menezes, J. C. Passos
Abstract:
The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels
Procedia PDF Downloads 143122 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat
Authors: M. Venegas, M. De Vega, N. García-Hernando
Abstract:
Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy
Procedia PDF Downloads 286121 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors
Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova
Abstract:
Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors
Procedia PDF Downloads 137120 Cycle-Oriented Building Components and Constructions Made from Paper Materials
Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider
Abstract:
The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources
Procedia PDF Downloads 281119 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy
Authors: M. N. Baig, F. N. Khan, M. Junaid
Abstract:
Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys
Procedia PDF Downloads 229118 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization
Authors: Sheng-Po Tseng, Che-Hua Yang
Abstract:
Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing
Procedia PDF Downloads 203117 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking
Authors: Mansour Eslami, Fereshte Habibi
Abstract:
Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.Keywords: kinematic, leg length discrepancy, shoe insole, walking
Procedia PDF Downloads 119116 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy
Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla
Abstract:
Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.Keywords: multi-effect distillation, performance ratio, robustness, solar energy
Procedia PDF Downloads 189115 Food Insecurity Among Afghan Women Refugees in Pakistan
Authors: Farhana Nosheen, Maleeha Fatima
Abstract:
This study on Afghan refugee women living in Punjab, Pakistan, shows a strong relationship between poor socio-economic status and lower nutritional health status. Pakistan is one of the significant countries accepting refugees from the Afghan war. Universally, refugees are vulnerable to food security and basic life necessities. The in-hand study aimed to investigate food insecurity among afghan refugees who recently migrated to Pakistan. Purposive sampling technique was employed to collect the data from afghan women refugees settled in refugee camp settled in Capital city Islamabad, Pakistan. Data was collected through an interview tool. It revealed from data that the majority of women were underweight, about 74.7% in their reproductive years, which is an alarming situation for the forthcoming children and families. It is also shown that There’s a strong impact of their income level, education, dietary habits and food insecurity on their overall health status. It can also be observed in their Body Mass Index and in their physical appearance; they also show extremely poor levels of hemoglobin which is directly indicated anemic condition, especially iron deficiency anemia among the young Afghan refugee women. The illiteracy rate is about 93.33% among the selected participants as well as a majority of this population has 10-12 family size in comparison with their income level of about 10,000-15,000 Pakistani rupees per month, which can hardly meet their daily food expenditure. Adequate food is rarely accessible to young girls and women due to fewer national and international food aids program available in Pakistan. The majority have pale yellowish skin color (due to low iron content) along with clear white eyes (low hemoglobin level), thin hairs (protein deficiency) and spoon-shaped nails (a direct indicator of low iron level). Data showed a significant relation between appetite and BMI as their appetite is very low, which is directly indicated in their underweight body condition. About 56.67% of the participants had Urinary Tract Infections. The main causes included personal unhygienic conditions and lack of washrooms as well as drinking water facilities in their refugee camps. It is suggested that National and international food aid programs should cater to the nutritional demands of women refugees in the world to protect them from food insecurities as well as future researchers should find out better ways of analysis and treatment plans for such kind of communities who are highly prone to nutritional deficiencies and lack of basic supplies.Keywords: food insecurity, refugees, women, vulnerable
Procedia PDF Downloads 102114 Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria
Authors: M. I. Ribah, M. Jibir, Y. A. Bashar, S. S. Manga
Abstract:
Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.Keywords: ready-to-eat meat products, retail outlets, public health, safety assessment
Procedia PDF Downloads 134113 Shale Gas Accumulation of Over-Mature Cambrian Niutitang Formation Shale in Structure-Complicated Area, Southeastern Margin of Upper Yangtze, China
Authors: Chao Yang, Jinchuan Zhang, Yongqiang Xiong
Abstract:
The Lower Cambrian Niutitang Formation shale (NFS) deposited in the marine deep-shelf environment in Southeast Upper Yangtze (SUY), possess excellent source rock basis for shale gas generation, however, it is currently challenged by being over-mature with strong tectonic deformations, leading to much uncertainty of gas-bearing potential. With emphasis on the shale gas enrichment of the NFS, analyses were made based on the regional gas-bearing differences obtained from field gas-desorption testing of 18 geological survey wells across the study area. Results show that the NFS bears low gas content of 0.2-2.5 m³/t, and the eastern region of SUY is higher than the western region in gas content. Moreover, the methane fraction also presents the similar regional differentiation with the western region less than 10 vol.% while the eastern region generally more than 70 vol.%. Through the analysis of geological theory, the following conclusions are drawn: Depositional environment determines the gas-enriching zones. In the western region, the Dengying Formation underlying the NFS in unconformity contact was mainly plateau facies dolomite with caves and thereby bears poor gas-sealing ability. Whereas the Laobao Formation underling the NFS in eastern region was a set of siliceous rocks of shelf-slope facies, which can effectively prevent the shale gas from escaping away from the NFS. The tectonic conditions control the gas-enriching bands in the SUY, which is located in the fold zones formed by the thrust of the Southern China plate towards to the Sichuan Basin. Compared with the western region located in the trough-like folds, the eastern region at the fold-thrust belts was uplifted early and deformed weakly, resulting in the relatively less mature level and relatively slight tectonic deformation of the NFS. Faults determine whether shale gas can be accumulated in large scale. Four deep and large normal faults in the study area cut through the Niutitang Formation to the Sinian strata, directly causing a large spillover of natural gas in the adjacent areas. For the secondary faults developed within the shale formation, the reverse faults generally have a positive influence on the shale accumulation while the normal faults perform the opposite influence. Overall, shale gas enrichment targets of the NFS, are the areas with certain thickness of siliceous rocks at the basement of the Niutitang Formation, and near the margin of the paleouplift with less developed faults. These findings provide direction for shale gas exploration in South China, and also provide references for the areas with similar geological conditions all over the world.Keywords: over-mature marine shale, shale gas accumulation, structure-complicated area, Southeast Upper Yangtze
Procedia PDF Downloads 148112 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening
Authors: Jaroslaw Gawryluk, Andrzej Teter
Abstract:
Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: angle column, compression, experiment, FEM
Procedia PDF Downloads 207111 Verification of Low-Dose Diagnostic X-Ray as a Tool for Relating Vital Internal Organ Structures to External Body Armour Coverage
Authors: Natalie A. Sterk, Bernard van Vuuren, Petrie Marais, Bongani Mthombeni
Abstract:
Injuries to the internal structures of the thorax and abdomen remain a leading cause of death among soldiers. Body armour is a standard issue piece of military equipment designed to protect the vital organs against ballistic and stab threats. When configured for maximum protection, the excessive weight and size of the armour may limit soldier mobility and increase physical fatigue and discomfort. Providing soldiers with more armour than necessary may, therefore, hinder their ability to react rapidly in life-threatening situations. The capability to determine the optimal trade-off between the amount of essential anatomical coverage and hindrance on soldier performance may significantly enhance the design of armour systems. The current study aimed to develop and pilot a methodology for relating internal anatomical structures with actual armour plate coverage in real-time using low-dose diagnostic X-ray scanning. Several pilot scanning sessions were held at Lodox Systems (Pty) Ltd head-office in South Africa. Testing involved using the Lodox eXero-dr to scan dummy trunk rigs at various degrees and heights of measurement; as well as human participants, wearing correctly fitted body armour while positioned in supine, prone shooting, seated and kneeling shooting postures. The verification of sizing and metrics obtained from the Lodox eXero-dr were then confirmed through a verification board with known dimensions. Results indicated that the low-dose diagnostic X-ray has the capability to clearly identify the vital internal structures of the aortic arch, heart, and lungs in relation to the position of the external armour plates. Further testing is still required in order to fully and accurately identify the inferior liver boundary, inferior vena cava, and spleen. The scans produced in the supine, prone, and seated postures provided superior image quality over the kneeling posture. The X-ray-source and-detector distance from the object must be standardised to control for possible magnification changes and for comparison purposes. To account for this, specific scanning heights and angles were identified to allow for parallel scanning of relevant areas. The low-dose diagnostic X-ray provides a non-invasive, safe, and rapid technique for relating vital internal structures with external structures. This capability can be used for the re-evaluation of anatomical coverage required for essential protection while optimising armour design and fit for soldier performance.Keywords: body armour, low-dose diagnostic X-ray, scanning, vital organ coverage
Procedia PDF Downloads 124110 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier
Authors: M. V. Rane, Tareke Tekia
Abstract:
Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration
Procedia PDF Downloads 348109 Exploring Neural Responses to Urban Spaces in Older People Using Mobile EEG
Authors: Chris Neale, Jenny Roe, Peter Aspinall, Sara Tilley, Steve Cinderby, Panos Mavros, Richard Coyne, Neil Thin, Catharine Ward Thompson
Abstract:
This research directly assesses older people’s neural activation in response to walking through a changing urban environment, as measured by electroencephalography (EEG). As the global urban population is predicted to grow, there is a need to understand the role that the urban environment may play on the health of its older inhabitants. There is a large body of evidence suggesting green space has a beneficial restorative effect, but this effect remains largely understudied in both older people and by using a neuroimaging assessment. For this study, participants aged 65 years and over were required to walk between a busy urban built environment and a green urban environment, in a counterbalanced design, wearing an Emotiv EEG headset to record real-time neural responses to place. Here we report on the outputs for these responses derived from both the proprietary Affectiv Suite software, which creates emotional parameters with a real time value assigned to them, as well as the raw EEG output focusing on alpha and beta changes, associated with changes in relaxation and attention respectively. Each walk lasted around fifteen minutes and was undertaken at the natural walking pace of the participant. The two walking environments were compared using a form of high dimensional correlated component regression (CCR) on difference data between the urban busy and urban green spaces. For the Emotiv parameters, results showed that levels of ‘engagement’ increased in the urban green space (with a subsequent decrease in the urban busy built space) whereas levels of ‘excitement’ increased in the urban busy environment (with a subsequent decrease in the urban green space). In the raw data, low beta (13 – 19 Hz) increased in the urban busy space with a subsequent decrease shown in the green space, similar to the pattern shown with the ‘excitement’ result. Alpha activity (9 – 13 Hz) shows a correlation with low beta, but not with dependent change in the regression model. This suggests that alpha is acting as a suppressor variable. These results suggest that there are neural signatures associated with the experience of urban spaces which may reflect the age of the cohort or the spatiality of the settings themselves. These are shown both in the outputs of the proprietary software as well as the raw EEG output. Built busy urban spaces appear to induce neural activity associated with vigilance and low level stress, while this effect is ameliorated in the urban green space, potentially suggesting a beneficial effect on attentional capacity in urban green space in this participant group. The interaction between low beta and alpha requires further investigation, in particular the role of alpha in this relationship.Keywords: ageing, EEG, green space, urban space
Procedia PDF Downloads 226108 Micro-Analytical Data of Au Mineralization at Atud Gold Deposit, Eastern Desert, Egypt
Authors: A. Abdelnasser, M. Kumral, B. Zoheir, P. Weihed, M. Budakoglu, L. Gumus
Abstract:
Atud gold deposits located at the central part of the Egyptian Eastern Desert of Egypt. It represents the vein-type gold mineralization at the Arabian-Nubian Shield in North Africa. Furthermore, this Au mineralization was closely associated with intense hydrothermal alteration haloes along the NW-SE brittle-ductile shear zone at the mined area. This study reports new data about the mineral chemistry of the hydrothermal and metamorphic minerals as well as the geothermobarometry of the metamorphism and determines the paragenetic interrelationship between Au-bearing sulfides and gangue minerals in Atud gold mine by using the electron microprobe analyses (EMPA). These analyses revealed that the ore minerals associated with gold mineralization are arsenopyrite, pyrite, chalcopyrite, sphalerite, pyrrhotite, tetrahedrite and gersdorffite-cobaltite. Also, the gold is highly associated with arsenopyrite and As-bearing pyrite as well as sphalerite with an average ~70 wt.% Au (+26 wt.% Ag) whereas it occurred either as disseminated grains or along microfractures of arsenopyrite and pyrite in altered wallrocks and mineralized quartz veins. Arsenopyrite occurs as individual rhombic or prismatic zoned grains disseminated in the quartz veins and wallrock and is intergrown with euhedral arsenian pyrite (with ~2 atom % As). Pyrite is As-bearing pyrite that occurs as disseminated subhedral or anhedral zoned grains replacing by chalcopyrite in some samples. Inclusions of sphalerite and pyrrhotite are common in the large pyrite grains. Secondary minerals such as sericite, calcite, chlorite and albite are disseminated either in altered wallrocks or in quartz veins. Sericite is the main secondary and alteration mineral associated with Au-bearing sulfides and calcite. Electron microprobe data of the sericite show that its muscovite component is high in all analyzed flakes (XMs= an average 0.89) and the phengite content (Mg+Fe a.p.f.u.) varies from 0.10 to 0.55 and from 0.13 to 0.29 in wallrocks and mineralized veins respectively. Carbonate occurs either as thin veinlets or disseminated grains in the mineralized quartz vein and/or the wallrocks. It has higher amount of calcite (CaCO3) and low amount of MgCO3 as well as FeCO3 in the wallrocks relative to the quartz veins. Chlorite flakes are associated with arsenopyrite and their electron probe data revealed that they are generally Fe-rich composition (FeOt 20.64–20.10 wt.%) and their composition is clinochlore either pycnochlorite or ripidolite with Al (iv) = 2.30-2.36 pfu and 2.41-2.51 pfu and with narrow range of estimated formation temperatures are (289–295°C) and (301-312°C) for pycnochlorite and ripidolite respectively. Albite is accompanied with chlorite with an Ab content is high in all analyzed samples (Ab= 95.08-99.20).Keywords: micro-analytical data, mineral chemistry, EMPA, Atud gold deposit, Egypt
Procedia PDF Downloads 326107 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance
Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty
Abstract:
One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.Keywords: fouling, monitoring, QCM, water quality
Procedia PDF Downloads 212106 Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach
Authors: Sofie Verstraete, Stijn Debruyne, Frederik Desplentere
Abstract:
Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line.Keywords: adhesive bonding, bio-fiber reinforced composite, flax fibers, lap joint
Procedia PDF Downloads 128105 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India
Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari
Abstract:
The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya
Procedia PDF Downloads 73104 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications
Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy
Abstract:
Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr
Procedia PDF Downloads 513103 Enhancing Efficiency of Building through Translucent Concrete
Authors: Humaira Athar, Brajeshwar Singh
Abstract:
Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete
Procedia PDF Downloads 130102 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas
Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu
Abstract:
Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels
Procedia PDF Downloads 113101 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties
Authors: Hsyi-En Cheng, Ying-Yi Liou
Abstract:
Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide
Procedia PDF Downloads 243