Search results for: thermal equilibrium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4277

Search results for: thermal equilibrium

2417 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 165
2416 Kinetics of Phytochemicals and Antioxidant Activity during Thermal Treatment of Cape Gooseberry (Physalis peruviana L)

Authors: Mary-Luz Olivares-Tenorio, Ruud Verkerk, Matthijs Dekker, Martinus A. J. S. van Boekel

Abstract:

Cape gooseberry, the fruit of the plant Physalis peruviana L. has gained interest in research given its contents of promising health-promoting compounds like contents. The presence of carotenoids, ascorbic acid, minerals, polyphenols, vitamins and antioxidants. This project aims to study thermal stability of β-carotene, ascorbic acid, catechin and epicatechin and antioxidant activity in the matrix of the Cape Gooseberry. Fruits were obtained from a Colombian field in Cundinamarca. Ripeness stage was 4 (According to NTC 4580, corresponding to mature stage) at the moment of the experiment. The fruits have been subjected to temperatures of 40, 60, 80, 100 and 120°C for several times. β-Carotene, ascorbic acid, catechin and epicatechin content were assessed with HPLC and antioxidant activity with the DPPH method. β-Carotene was stable upon 100°C, and showed some degradation at 120°C. The same behavior was observed for epicatechin. Catechin increased during treatment at 40°C, at 60°C it remained stable and it showed degradation at 80°C, 100°C and 120°C that could be described by a second order kinetic model. Ascorbic acid was the most heat-sensitive of the analyzed compounds. It showed degradation at all studied temperatures, and could be described by a first order model. The activation energy for ascorbic acid degradation in cape gooseberry was 46.0 kJ/mol and its degradation rate coefficient at 100 °C was 6.53 x 10-3 s-1. The antioxidant activity declined for all studied temperatures. Results from this study showed that cape gooseberry is an important source of different health-promoting compounds and some of them are stable to heat. That makes this fruit a suitable raw material for processed products such as jam, juices and dehydrated fruit, giving the consumer a good intake of these compounds.

Keywords: goldenberry, health-promoting compounds, phytochemical, processing, heat treatment

Procedia PDF Downloads 447
2415 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 207
2414 Paradigms of Assessment, Valuation and Quantification to Trade Ecosystem Services: A Review Focusing on Mangroves and Wetlands

Authors: Rama Seth, Luise Noring, Pratim Majumdar

Abstract:

Based on an extensive literature review, this paper presents distinct approaches to value, quantify and trade ecosystem services, with particular emphasis on services provided by mangroves and wetlands. Building on diverse monetary and market-based systems for the improved allocation of natural resources, such trading and exchange-based methods can help tackle the degradation of ecosystem services in a more targeted and structured manner than achievable with stand-alone policy and administrative regulations. Using various threads of literature, the paper proposes a platform that serves as the skeletal foundation for developing an efficient global market for ecosystem services trading. The paper bridges a significant research and practice gap by recommending how to establish an equilibrium in the biosphere via trading mechanisms while also discovering other research gaps and future research potential in the domain of ecosystem valuation.

Keywords: environment, economics, mangroves, wetlands, markets, ESG, global capital, climate investments, valuation, ecosystem services

Procedia PDF Downloads 238
2413 Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties

Procedia PDF Downloads 430
2412 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments

Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler

Abstract:

This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.

Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels

Procedia PDF Downloads 84
2411 Compensation Mechanism Applied to Eco-Tourism Development in China

Authors: Min Wei

Abstract:

With the rapid development eco-tourism resources exploitation, the conflict between economy development and ecological environment is increasingly prominent. The environmental protection laws, however, are lack of necessary legal support to use market mechanism and economic means to carry out ecological compensation and promote the environmental protection. In order to protect the sustainable utilization of eco-tourism resources and the benign development of the interests of various stakeholders, protection of ecological compensation balance should be put on schedule. The main role of institutional guarantee in eco-tourism resources' value compensation mechanism is to solve the question 'how to guarantee compensation'. The evaluation of the game model in this paper reveals that interest balance of stakeholders is an important cornerstone to obtain the sustainable development. The findings result in constructing a sustainable development pattern of eco- tourism industry based on tripartite game equilibrium among government, tourism enterprises and tourists. It is important that the social, economic and ecological environment should be harmonious development during the pursuit of eco-tourism growth.

Keywords: environmental protection, ecological compensation, eco-tourism, market mechanism

Procedia PDF Downloads 376
2410 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand

Authors: Won Taek Oh, Adin Richard

Abstract:

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.

Keywords: critical height, matric suction, unsaturated soil, unsupported trench

Procedia PDF Downloads 118
2409 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India

Authors: Kirti Tewari, Rahul Dev

Abstract:

Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.

Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters

Procedia PDF Downloads 334
2408 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 248
2407 Explanatory Analysis the Effect of Urban Form and Monsoon on Cooling Effect of Blue-Green Spaces: A Case Study in Singapore

Authors: Yangyang Zhou

Abstract:

Rapid urbanization has caused the urban heat island effect, which will threaten the physical and mental health of urban dwellers, and blue-green spaces can mitigate the thermal environment effectively. In this study, we calculated the average LST from 2013 to 2022, Northeastmonsoon and Southwestmonsoon of Singapore, and compared the cooling effect differences of the four blue-green spaces. Then, spatial correlation and spatial autoregression model were conducted between cooling distance intensity (CDI) and 11 independent variables. The results reveal that (1) the highest mean land surface temperature (LST) in all years, Northeast monsoon and Southwest monsoon can reach 42.8 ℃, 41.6 ℃, and 42.9 ℃, respectively. (2) the temperature-changing tendency in the three time periods is similar to each other, while the overall LST changing trends of the Southwest monsoon are lower than all year and Northeast monsoon. (3) the cooling distance of the sea can reach 1200 m, and CEI is highly positively correlated with NDBI and BuildD and highly negatively correlated with SVF, NDVI and TreeH. LISA maps showed that the zones that passed the significance test between CDI, NDBI and BuildD were nearly the same locations; the same phenomenon also happened between CDI and SVF, NDVI and TreeH. (4) SLM had better regression results than SEM in all the regions; only 3 independent variables passed the significance test in region 1, and most independent variables can pass the significance test in other regions. Variables DIST and NDBI were significantly affecting the CDI in all the regions. In the whole region, all the variables passed the significance test, and NDBI (1.61), SVF (0.95) and NDVI (0.5) had the strongest influence on CDI.

Keywords: cooling effect, land surface temperature, thermal environment mitigation, spatial autoregression model

Procedia PDF Downloads 15
2406 The Distribution of rs5219 Polymorphism in the Non-Diabetic Elderly Jordanian Subject

Authors: Foad Alzoughool

Abstract:

Conflicting studies on the association between the rs5219 polymorphism and type 2 diabetes, some studies have confirmed a strong relationship between this variant and type2 diabetes, on the other hand, many studies denied the existence of this association. This study aimed to provide evidence about whether the rs5219 polymorphism has or hasn't a role as a risk factor for diabetes and meta-analysis to investigate the role of the control age group in the association. Genotyping of the rs5219 polymorphism was performed in a cohort of 266 healthy elderly subjects with a mean age (60.2 ± 5.1) with no history of diabetes (HbA1c < 6%) using standard Sanger sequencing methods. Lys/Lys alleles were detected in 20 persons (7.5%), Lys/Glu alleles in 96 persons (36.1%), and Glu/Glu in 150 persons (56.4%). The genotype distribution was consistent with Hardy–Weinberg equilibrium (P =0.7). Meta-analysis notably indicates no association between rs5219 polymorphism and type 2 diabetes in all studies used the younger age of the control group compared to the patient's age. In conclusion, our study sheds light on the importance of age factor among the control group recruited in case-control studies.

Keywords: Type 2 diabetes, rs5219 polymorphism, E23K, KCNJ11 gene

Procedia PDF Downloads 148
2405 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 182
2404 Staying Cool in the Heat: How Tropical Finches Behaviorally Adjust to Extreme Heat in the Wild

Authors: Mara F. Müller, Simon C. Griffith, Tara L. Crewe, Mirjam Kaestli, Sydney J. Collett, Ian J. Radford, Hamish A. Campbell

Abstract:

The intensity and frequency of heat waves have been progressively increasing because of climate change. Passerines that inhabit very hot regions are already close to their physiological thermal limit and are thus considered highly susceptible to increased ambient temperatures. However, the extent by which passerines behaviorally compensate for extreme heat in their natural habitat has rarely been assessed due to monitoring challenges. To address this knowledge gap, coded VHF-nano transmitters were attached to a tropical passerine (Gouldian finch, Chloebia gouldiae). Fine-scale activity and movement were monitored throughout the hottest and driest period of the year using an array of static VHF-receivers. The finches were found to typically show a peak activity for a few hours at sunrise and remained relatively quiescent for the rest of the day. However, on extremely hot days (max temperature >38ºC), finches showed higher activity levels earlier in the morning and presented a second peak in the afternoon. Gouldian finches are physiologically challenged when ambient temperatures exceed 38ºC, suggesting the shift in movement activity reflects a behavioral mitigation strategy to extreme heat. These tropical finches already exist on an energetic knife-edge during this time of the year due to resource scarcity. Hence, the increased energetic expenditure to mitigate thermal stress may be detrimental. The study demonstrates the value of VHF-telemetry technology in monitoring the impact of global change on the biology of small-bodied mobile species.

Keywords: animal tracking, biotelemetry, climate change, extreme heat, movement activity, radiotelemetry, VHF-telemetry

Procedia PDF Downloads 82
2403 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 52
2402 Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina

Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez

Abstract:

Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).

Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS

Procedia PDF Downloads 372
2401 Removal of Acetaminophen with Chitosan-Nano Activated Carbon Beads from Aqueous Sources

Authors: Parisa Amouzgar, Chan Eng Seng, Babak Salamatinia

Abstract:

Pharmaceutical products are being increasingly detected in the environment. However, conventional treatment systems do not provide an adequate treatment for pharmaceutical drug elimination and still there is not a regulated standard for their limitation in water. Since decades before, pharmaceuticals have been in the water but only recently, their levels in the environment have been recognized and quantified as potentially hazardous to ecosystems. In this study chitosan with a bio-based NAC (Ct-NAC) were made as beads with extrusion dripping method and investigated for acetaminophen removal from water. The effects of beading parameters such as flow rate in dripping, the distance from dipping tip to the solution surface, concentration of chitosan and percentage of NAC were analyzed to find the optimum condition. Based on the results, the overall adsorption rate and removal efficiency increased during the time till the equilibrium rate which was 80% removal of acetaminophen. The maximum adsorption belonged to the beads with 1.75% chitosan, 60% NAC, flow-rate of 1.5 ml/min while the distance of dripping was 22.5 cm.

Keywords: pharmaceuticals, water treatment, chitosan nano activated carbon beads, Acetaminophen

Procedia PDF Downloads 347
2400 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 371
2399 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure

Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail

Abstract:

We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.

Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon

Procedia PDF Downloads 536
2398 The Implementation of Incineration for Waste Reduction

Authors: Kong Wing Man

Abstract:

The purpose of this paper is to review the waste generation and management in different parts of the world. It is undeniable that waste generation and management has become an alarming environmental issue. Solid waste generation links inextricably to the degree of industrialization and economic development. Urbanization increases with the economic wealth of the countries. As the income of people and standard of living enhances, so does their consumption of goods and services, leading to a corresponding increase in waste generation. Based on the latest statistics from What A Waste Report published by World Bank (2012), it is estimated that the current global Municipal Solid Waste (MSW) generation levels are about 1.3 billion tonnes per year (1.2 kg per capita per day). By 2050, it is projected that the waste generation will be doubled. Although many waste collection practices have been implemented in various countries, the amount of waste generation keeps increasing. An integrated solid waste management is needed in order to reduce the continuous significant increase in waste generation rates. Although many countries have introduced and implemented the 3Rs strategy and landfill, however, these are only the ways to diverse waste, but cannot reduce the volume. Instead, the advanced thermal treatment technology, incineration, can reduce up to 90% volume of disposed waste prior to dispose at landfills is discussed. Sweden and Tokyo were chosen as case studies, which provide an overview of the municipal solid waste management system. With the condition of escalating amount of wastes generated, it is crucial to build incinerators to relief pressing needs of landfill. Two solutions are proposed to minimize waste generation, including one incineration in one city and several small incinerators in different cities. While taking into consideration of a sustainable model and the perspectives of all stakeholders, building several incinerators at different cities and different sizes would be the best option to reduce waste. Overall, the solution to the global solid waste management should be a holistic approach with the involvement of both government and citizens.

Keywords: Incineration, Municipal Solid Waste, Thermal Treatment, Waste generation

Procedia PDF Downloads 468
2397 Wave Interaction with Defects in Pressurized Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.

Keywords: Finite Element, Prestressed Structures, Wave Finite Element, Wave Propagation Properties, Wave Scattering Coefficients.

Procedia PDF Downloads 288
2396 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde

Authors: Pawan P. Kalbende, Anil B. Zade

Abstract:

A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.

Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake

Procedia PDF Downloads 292
2395 Improvement of Thermal Comfort Conditions in an Urban Space "Case Study: The Square of Independence, Setif, Algeria"

Authors: Ballout Amor, Yasmina Bouchahm, Lacheheb Dhia Eddine Zakaria

Abstract:

Several studies all around the world were conducted on the phenomenon of the urban heat island, and referring to the results obtained, one of the most important factors that influence this phenomenon is the mineralization of the cities which means the reducing of evaporative urban surfaces, replacing vegetation and wetlands with concrete and asphalt. The use of vegetation and water can change the urban environment and improve comfort, thus reduce the heat island. The trees act as a mask to the sun, wind, and sound, and also as a source of humidity which reduces air temperature and surrounding surfaces. Water also acts as a buffer to noise; it is also a source of moisture and regulates temperature not to mention the psychological effect on humans. Our main objective in this paper is to determine the impact of vegetation, ponds and fountains on the urban micro climate in general and on the thermal comfort of people along the Independence square in the Algerian city of Sétif, which is a semi-arid climate, in particularly. In order to reach this objective, a comparative study between different scenarios has been done; the use of the Envi-met program enabled us to model the urban environment of the Independence Square and to study the possibility of improving the conditions of comfort by adding an amount of vegetation and water ponds. After studying the results obtained (temperature, relative humidity, wind speed, PMV and PPD indicators), the efficiency of the additions we've made on the square was confirmed and this is what helped us to confirm our assumptions regarding the terms of comfort in the studied site, and in the end we are trying to develop recommendations and solutions which may contribute to improve the conditions for greater comfort in the Independence square.

Keywords: comfort in outer space, urban environment, scenarisation, vegetation, water ponds, public square, simulation

Procedia PDF Downloads 449
2394 Design and Development of a Lead-Free BiFeO₃-BaTiO₃ Quenched Ceramics for High Piezoelectric Strain Performance

Authors: Muhammad Habib, Lin Tang, Guoliang Xue, Attaur Rahman, Myong-Ho Kim, Soonil Lee, Xuefan Zhou, Yan Zhang, Dou Zhang

Abstract:

Designing a high-performance, lead-free ceramic has become a cutting-edge research topic due to growing concerns about the toxic nature of lead-based materials. In this work, a convenient strategy of compositional design and domain engineering is applied to the lead-fee BiFeO₃-BaTiO₃ ceramics, which provides a flexible polarization-free-energy profile for domain switching. Here, simultaneously enhanced dynamic piezoelectric constant (d33* = 772 pm/V) and a good thermal-stability (d33* = 26% over the temperature of 20-180 ᵒC) are achieved with a high Curie temperature (TC) of 432 ᵒC. This high piezoelectric strain performance is collectively attributed to multiple effects such as thermal quenching, suppression of defect charges by donor doping, chemically induced local structure heterogeneity, and electric field-induced phase transition. Furthermore, the addition of BT content decreased octahedral tilting, reduced anisotropy for domain switching and increased tetragonality (cₜ/aₜ), providing a wider polar length for B-site cation displacement, leading to high piezoelectric strain performance. Atomic-resolution transmission electron microscopy and piezoelectric force microscopy combined with X-ray diffraction results strongly support the origin of high piezoelectricity. The high and temperature-stable piezoelectric strain response of this work is superior to those of other lead-free ceramics. The synergistic approach of composition design and the concept present here for the origin of high strain response provides a paradigm for the development of materials for high-temperature piezoelectric actuator applications.

Keywords: Piezoelectric, BiFeO3-BaTiO3, Quenching, Temperature-insensitive

Procedia PDF Downloads 71
2393 Mass Transfer in Reactor with Magnetic Field Generator

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.

Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field

Procedia PDF Downloads 198
2392 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 57
2391 Maxwell’s Economic Demon Hypothesis and the Impossibility of Economic Convergence of Developing Economies

Authors: Firano Zakaria, Filali Adib Fatine

Abstract:

The issue f convergence in theoretical models (classical or Keynesian) has been widely discussed. The results of the work affirm that most countries are seeking to get as close as possible to a steady state in order to catch up with developed countries. In this paper, we have retested this question whether it is absolute or conditional. The results affirm that the degree of convergence of countries like Morocco is very low and income is still far from its equilibrium state. Moreover, the analysis of financial convergence, of the countries in our panel, states that the pace in this sector is more intense: countries are converging more rapidly in financial terms. The question arises as to why, with a fairly convergent financial system, growth does not respond, yet the financial system should facilitate this economic convergence. Our results confirm that the degree of information exchange between the financial system and the economic system did not change significantly between 1985 and 2017. This leads to the hypothesis that the financial system is failing to serve its role as a creator of information in developing countries despite all the reforms undertaken, thus making the existence of an economic demon in the Maxwell prevail.

Keywords: economic convergence, financial convergence, financial system, entropy

Procedia PDF Downloads 88
2390 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 62
2389 Mitigation Strategies in the Urban Context of Sydney, Australia

Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris

Abstract:

One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.

Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect

Procedia PDF Downloads 87
2388 The Influence of Thomson Effect on the Performance of N-Type Skutterudite Thermoelement

Authors: Anbang Liu, Huaqing Xie, Zihua Wu, Xiaoxiao Yu, Yuanyuan Wang

Abstract:

Due to the temperature-dependence and mutual coupling of thermoelectric parameters, the Thomson effect always exists, which is derived from temperature gradients during thermoelectric conversion. The synergistic effect between the Thomson effect and non-equilibrium heat transport of charge carriers leads to local heat absorption or release in thermoelements, thereby affecting its power generation performance and conversion efficiency. This study verified and analyzed the influence and mechanism of the Thomson effect on N-type skutterudite thermoelement through quasi-steady state testing under approximate vacuum conditions. The results indicate the temperature rise/fall of N-type thermoelement at any position is affected by Thomson heat release/absorption. Correspondingly, the Thomson effect also contributes advantageously/disadvantageously to the output power of N-type skutterudite thermoelement when the Thomson coefficients are positive/negative. In this work, the output power can be promoted or decreased maximally by more than 27% due to the presence of Thomson heat when the absolute value of the Thomson coefficient is around 36 μV/℃.

Keywords: Thomson effect, heat transport, thermoelectric conversion, numerical simulation

Procedia PDF Downloads 56