Search results for: multi-temporal image classification
2698 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 1232697 Facilitating Waste Management to Achieve Sustainable Residential Built Environments
Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy
Abstract:
The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.Keywords: recycling, residential buildings, sustainability, waste
Procedia PDF Downloads 3272696 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1602695 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 2122694 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić
Abstract:
Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.Keywords: cerebral palsy, Czech republic, social participation, the school function assessment
Procedia PDF Downloads 3612693 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams
Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane
Abstract:
The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions
Procedia PDF Downloads 3352692 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients
Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho
Abstract:
Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper
Procedia PDF Downloads 1462691 Ischemic Stroke Detection in Computed Tomography Examinations
Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina
Abstract:
Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means
Procedia PDF Downloads 3662690 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students
Authors: Sagheer Ahmad
Abstract:
Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.Keywords: biology, innovative approaches, taxonomic classification, teaching
Procedia PDF Downloads 2502689 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording
Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen
Abstract:
It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration
Procedia PDF Downloads 1802688 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey
Authors: Rahmi Kafadar, Levent Genc
Abstract:
In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)
Procedia PDF Downloads 3532687 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 1332686 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.Keywords: artificial neural network, classification, students, e-learning
Procedia PDF Downloads 4262685 Quantifying Firm-Level Environmental Innovation Performance: Determining the Sustainability Value of Patent Portfolios
Authors: Maximilian Elsen, Frank Tietze
Abstract:
The development and diffusion of green technologies are crucial for achieving our ambitious climate targets. The Paris Agreement commits its members to develop strategies for achieving net zero greenhouse gas emissions by the second half of the century. Governments, executives, and academics are working on net-zero strategies and the business of rating organisations on their environmental, social and governance (ESG) performance has grown tremendously in its public interest. ESG data is now commonly integrated into traditional investment analysis and an important factor in investment decisions. Creating these metrics, however, is inherently challenging as environmental and social impacts are hard to measure and uniform requirements on ESG reporting are lacking. ESG metrics are often incomplete and inconsistent as they lack fully accepted reporting standards and are often of qualitative nature. This study explores the use of patent data for assessing the environmental performance of companies by focusing on their patented inventions in the space of climate change mitigation and adaptation technologies (CCMAT). The present study builds on the successful identification of CCMAT patents. In this context, the study adopts the Y02 patent classification, a fully cross-sectional tagging scheme that is fully incorporated in the Cooperative Patent Classification (CPC), to identify Climate Change Adaptation Technologies. The Y02 classification was jointly developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) and provides means to examine technologies in the field of mitigation and adaptation to climate change across relevant technologies. This paper develops sustainability-related metrics for firm-level patent portfolios. We do so by adopting a three-step approach. First, we identify relevant CCMAT patents based on their classification as Y02 CPC patents. Second, we examine the technological strength of the identified CCMAT patents by including more traditional metrics from the field of patent analytics while considering their relevance in the space of CCMAT. Such metrics include, among others, the number of forward citations a patent receives, as well as the backward citations and the size of the focal patent family. Third, we conduct our analysis on a firm level by sector for a sample of companies from different industries and compare the derived sustainability performance metrics with the firms’ environmental and financial performance based on carbon emissions and revenue data. The main outcome of this research is the development of sustainability-related metrics for firm-level environmental performance based on patent data. This research has the potential to complement existing ESG metrics from an innovation perspective by focusing on the environmental performance of companies and putting them into perspective to conventional financial performance metrics. We further provide insights into the environmental performance of companies on a sector level. This study has implications of both academic and practical nature. Academically, it contributes to the research on eco-innovation and the literature on innovation and intellectual property (IP). Practically, the study has implications for policymakers by deriving meaningful insights into the environmental performance from an innovation and IP perspective. Such metrics are further relevant for investors and potentially complement existing ESG data.Keywords: climate change mitigation, innovation, patent portfolios, sustainability
Procedia PDF Downloads 832684 Geographic Information System (GIS) for Structural Typology of Buildings
Authors: Néstor Iván Rojas, Wilson Medina Sierra
Abstract:
Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.Keywords: microzonation, buildings, geo-processing, cadastral number
Procedia PDF Downloads 3342683 Blue Eyes and Blonde Hair in Mass Media: A News Discourse Analysis of Western Media on the News Coverage of Ukraine
Authors: Zahra Mehrabbeygi
Abstract:
This research is opted to analyze and survey discourse variety and news image-making in western media regarding the news coverage of the Russian army intrusion into Ukraine. This research will be done on the news coverage of Ukraine in a period from February 2022 to May 2022 in five western media, "BBC, CBS, NBC, Al Jazeera, and Telegraph." This research attempts to discover some facts about the news policies of the five western news agencies during the circumstances of the Ukraine-Russia war. Critical theories in the news, such as Framing, Media Imperialism of News, Image Making, Discourse, and Ideology, were applied to achieve this goal. The research methodology uses Van Dijk's discourse exploration method based on discourse analysis. The research's statistical population is related to all the news about racial discrimination during the mentioned period. After a statistical population survey with Targeted Sampling, the researcher randomly selected ten news cases for exploration. The research findings show that the western media have similarities in their texts via lexical items, polarization, citations, persons, and institutions. The research findings also imply pre-suppositions, connotations, and components of consensus agreement and underlying predicates in the outset, middle, and end events. The reaction of some western media not only shows their bewilderment but also exposes their prejudices rooted in racism.Keywords: news discourse analysis, western media, racial discrimination, Ukraine-Russia war
Procedia PDF Downloads 972682 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 1002681 Path Planning for Orchard Robot Using Occupancy Grid Map in 2D Environment
Authors: Satyam Raikwar, Thomas Herlitzius, Jens Fehrmann
Abstract:
In recent years, the autonomous navigation of orchard and field robots is an emerging technology of the mobile robotics in agriculture. One of the core aspects of autonomous navigation builds upon path planning, which is still a crucial issue. Generally, for simple representation, the path planning for a mobile robot is performed in a two-dimensional space, which creates a path between the start and goal point. This paper presents the automatic path planning approach for robots used in orchards and vineyards using occupancy grid maps with field consideration. The orchards and vineyards are usually structured environment and their topology is assumed to be constant over time; therefore, in this approach, an RGB image of a field is used as a working environment. These images undergone different image processing operations and then discretized into two-dimensional grid matrices. The individual grid or cell of these grid matrices represents the occupancy of the space, whether it is free or occupied. The grid matrix represents the robot workspace for motion and path planning. After the grid matrix is described, a probabilistic roadmap (PRM) path algorithm is used to create the obstacle-free path over these occupancy grids. The path created by this method was successfully verified in the test area. Furthermore, this approach is used in the navigation of the orchard robot.Keywords: orchard robots, automatic path planning, occupancy grid, probabilistic roadmap
Procedia PDF Downloads 1552680 Behavior of Foreign Tourists Visited Wat Phrachetuponwimolmangkalaram
Authors: Pranee Pathomchaiwat
Abstract:
This research aims to study tourism data and behavior of foreign tourists visited Wat Phrachetuponwimolmangkalaram (Wat Po) Sample groups are tourists who visited inside the temple, during February, March, April and May 2013. Tools used in the research are questionnaires constructed by the researcher, and samples are dawn by Convenience sampling. There are 207 foreign tourists who are willing to be respondents. Statistics used are percentage, average mean and standard deviation. The results of the research reveal that: A. General Data of Respondents: The foreign tourists who visited the temple are mostly female (57.5 %), most respondents are aged between 20-29 years (37.2%). Most respondents live in Europe (62.3%), most of them got the Bachelor’s degree (40.1%), British are mostly found (16.4%), respondents who are students are also found (23.2%), and Christian are mostly found (60.9%). B. Tourists’ Behavior While Visiting the Temple Compound: The result shows that the respondents came with family (46.4%), have never visited the temples (40.6%), and visited once (42 %). It is found that the foreign tourists’ inappropriate behavior are wearing revealing attires (58.9%), touching or getting closed to the monks (55.1%), and speaking loudly (46.9%) respectively. The respondents’ outstanding objectives are to visit inside the temple (57.5%), to pay respect to the Reclining Buddha Image in the Viharn (44.4%) and to worship the Buddha image in the Phra Ubosod (37.7%) respectively. C. The Respondents’ Self-evaluation of Performance: It is found that over all tourists evaluated themselves in the highest level averaged 4.40. When focusing on each item, it is shown that they evaluated themselves in the highest level on obeying the temple staff averaged 4.57, and cleanness concern of the temple averaged 4.52, well-behaved performance during the temple visit averaged 4.47 respectively.Keywords: deportment, traveler, foreign tourists, temple
Procedia PDF Downloads 3072679 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 732678 Speech Disorders as Predictors of Social Participation of Children with Cerebral Palsy in the Primary Schools of the Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić–Jovanović, Srećko Potić, Sanja Tomić
Abstract:
The name cerebral palsy comes from the word cerebrum, which means the brain and the word palsy, which means seizure, and essentially refers to the movement disorder. In the clinical picture of cerebral palsy, basic neuromotor disorders are associated with other various disorders: behavioural, intellectual, speech, sensory, epileptic seizures, and bone and joint deformities. Motor speech disorders are among the most common difficulties present in people with cerebral palsy. Social participation represents an interaction between an individual and their social environment. Quality of social participation of the students with cerebral palsy at school is an important indicator of their successful participation in adulthood. One of the most important skills for the undisturbed social participation is ability of good communication. The aim of the study was to determine relation between social participation of students with cerebral palsy and presence of their speech impairment in primary schools in the Czech Republic. The study was performed in the Czech Republic in mainstream schools and schools established for the pupils with special education needs. We analysed 75 children with cerebral palsy aged between six and twelve years attending up to sixth grade by using the first and the third part of the school function assessment questionnaire as the main instrument. The other instrument we used in the research is the Gross motor function classification system–five–level classification system, which measures degree of motor functions of children and youth with cerebral palsy. Funding for this study was provided by the Grant Agency of Charles University in Prague.Keywords: cerebral palsy, social participation, speech disorders, The Czech Republic, the school function assessment
Procedia PDF Downloads 2852677 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel
Abstract:
Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity
Procedia PDF Downloads 742676 Effects of Occupational Therapy on Children with Unilateral Cerebral Palsy
Authors: Sedef Şahin, Meral Huri
Abstract:
Cerebral Palsy (CP) represents the most frequent cause of physical disability in children with a rate of 2,9 per 1000 live births. The activity-focused intervention is known to improve function and reduce activity limitations and barriers to participation of children with disabilities. The aim of the study was to assess the effects of occupational therapy on level of fatigue, activity performance and satisfaction in children with Unilateral Cerebral Palsy. Twenty-two children with hemiparetic cerebral palsy (mean age: 9,3 ± 2.1years; Gross Motor Function Classification System ( GMFCS) level from I to V (I = 54%, II = 23%, III = 14%, IV= 9%, V= 0%), Manual Ability Classification System (MACS) level from I to V (I = 40%, II = 32%, III = 14%, IV= 10%, V= 4%), were assigned to occupational therapy program for 6 weeks.Visual Analogue Scale (VAS) was used for intensity of the fatigue they experienced at the time on a 10 point Likert scale (1-10).Activity performance and satisfaction were measured with Canadian Occupational Performance Measure (COPM).A client-centered occupational therapy intervention was designed according to results of COPM. The results were compared with nonparametric Wilcoxon test before and after the intervention. Thirteen of the children were right-handed, whereas nine of the children were left handed.Six weeks of intervention showed statistically significant differences in level of fatigue, compared to first assessment(p<0,05). The mean score of first and the second activity performance scores were 4.51 ± 1.70 and 7.35 ± 2.51 respectively. Statistically significant difference between performance scores were found (p<0.01). The mean scores of first and second activity satisfaction scores were of 2.30± 1.05 and 5.51 ± 2.26 respectively. Statistically significant difference between satisfaction assessments were found (p<0.01). Occupational therapy is an evidence-based approach and occupational therapy interventions implemented by therapists were clinically effective on severity of fatigue, activity performance and satisfaction if implemented individually during 6 weeks.Keywords: activity performance, cerebral palsy, fatigue, occupational therapy
Procedia PDF Downloads 2372675 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3472674 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector
Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau
Abstract:
Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement
Procedia PDF Downloads 1982673 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1122672 Optical-Based Lane-Assist System for Rowing Boats
Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park
Abstract:
Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.Keywords: auto-pilot, lane-assist, marine, optical, rowing
Procedia PDF Downloads 1322671 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone
Authors: Zhuang Hou, Xiaolei Cao
Abstract:
The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program
Procedia PDF Downloads 1352670 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 1612669 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 332