Search results for: mixed methods approach
25960 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 7525959 Developing Digital Twins of Steel Hull Processes
Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser
Abstract:
The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.Keywords: digital twin, finite state method, production system engineering, shipyard
Procedia PDF Downloads 9925958 Evaluation of Manual and Automatic Calibration Methods for Digital Tachographs
Authors: Sarp Erturk, Levent Eyigel, Cihat Celik, Muhammet Sahinoglu, Serdar Ay, Yasin Kaya, Hasan Kaya
Abstract:
This paper presents a quantitative analysis on the need for automotive calibration methods for digital tachographs. Digital tachographs are mandatory for vehicles used in people and goods transport and they are an important aspect for road safety and inspection. Digital tachographs need to be calibrated for workshops in order for the digital tachograph to display and record speed and odometer values correctly. Calibration of digital tachographs can be performed either manual or automatic. It is shown in this paper that manual calibration of digital tachographs is prone to errors and there can be differences between manual and automatic calibration parameters. Therefore automatic calibration methods are imperative for digital tachograph calibration. The presented experimental results and error analysis clearly support the claims of the paper by evaluating and statistically comparing manual and automatic calibration methods.Keywords: digital tachograph, road safety, tachograph calibration, tachograph workshops
Procedia PDF Downloads 33325957 Synergy and Complementarity in Technology-Intensive Manufacturing Networks
Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang
Abstract:
This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.Keywords: city system, complementarity, synergy network, higher-order network
Procedia PDF Downloads 4325956 Apathetic Place, Hostile Space: A Qualitative Study on the Ability of Immigration Detention in the UK to Promote the Health and Dignity of Detainees
Abstract:
Background: The UK has one of the largest immigration detention estates in Europe and is under increasing scrutiny, particularly regarding the lack of transparency over the use of detention and the conditions. Therefore, this research seeks to explore the professional perceptions of the ability of immigration detention in the UK to promote health and dignity. Methods: A phenomenological approach to qualitative methods were used, with social constructivist theorisations of health and dignity. Seven semi-structured interviews were conducted using Microsoft Teams. Participants included a range of immigration detention stakeholders who have visited closed immigration detention centres in the UK in a professional capacity. Recorded interviews were transcribed verbatim, and analysis was data-driven through inductive reflexive thematic analysis of the entire data set to account for the small sample size. This study received ethical approval from University College London Research Ethics Committee. Results: Two global themes were created through analysis: apathetic place and hostile space. Apathetic place discusses the lack of concern for detainees' daily living and healthcare needs within immigration detention in the UK. This is explored through participants' perceptions of the lack of ability of monitoring and evaluation processes to ensure detainees are able to live with dignity and understand the unfulfilled duty of care that exists in detention. Hostile space discusses immigration detention in the UK as a wider system of hostility. This is explored through the disempowering impact on detainees, the perception of a failing system as a result of inadequate safeguarding procedures, and a belief that the intention of immigration detention is misaligned with its described purpose. Conclusion: This research explains why the current immigration detention system in the UK is unable to promote health and dignity, offering a social justice and action-orientated approach to research in this sphere. The findings strengthen the discourse against the use of detention as an immigration control tool in the UK. Implications for further research include a stronger emphasis on investigating alternatives to detention and culturally considerate opportunities for patient-centred healthcare.Keywords: access to healthcare, dignity, health, immigration detention, migrant, refugee, UK
Procedia PDF Downloads 10325955 The Threats of Deforestation, Forest Fire and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia
Authors: Siti Badriyah Rushayati, Resti Meilani, Rachmad Hermawan
Abstract:
A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. The annual occurrences of deforestation and forest fire pose a threat toward such unique biosphere reserve. Forest fire produced smokes that along with mass airflow reached neighboring countries, particularly Singapore and Malaysia. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.Keywords: biosphere reserve, CO2 emission, deforestation, forest fire
Procedia PDF Downloads 48725954 A Multimodal Approach to Improve the Performance of Biometric System
Authors: Chander Kant, Arun Kumar
Abstract:
Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software.Keywords: FAR, minutiae point, multimodal bio metrics, primary bio metric, soft bio metric
Procedia PDF Downloads 34625953 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion
Abstract:
This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design
Procedia PDF Downloads 12325952 Factors Affecting Employee’s Effectiveness at Job in Banking Sectors of Pakistan
Authors: Sajid Aman
Abstract:
Jobs in the banking sector in Pakistan are perceived as very tough, due to which employee turnover is very high. However, the managerial role is very important in influencing employees’ attitudes toward their turnout. This paper explores the manager’s role in influencing employees’ effectiveness on the job. The paper adopted a pragmatic approach by combining both qualitative and quantitative data. The study employed an exploratory sequential strategy under a mixed-method research design. Qualitative data was analyzed using thematic analysis. Five major themes, such as the manager’s attitude towards employees, his leadership style, listening to employee’s personal problems, provision of personal loans without interest and future career prospects, emerged as key factors increasing employee’s effectiveness in the banking sector. The quantitative data revealed that a manager’s attitude, leadership style, availability to listen to employees’ personal problems, and future career prospects and listening to employee’s personal problems are strongly associated with employees’ effectiveness at the job. However, personal loan without interest was noted as having no significant association with employee’s effectiveness at the job. The study concludes manager’s role is more important in the effectiveness of the employees at their job in the banking sector. It is suggested that managers should have a positive attitude towards employees and give time to listening to employee’s problems, even personal ones.Keywords: banking sector, employee’s effectiveness, manager’s role, leadership style
Procedia PDF Downloads 3225951 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova
Abstract:
In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases
Procedia PDF Downloads 28525950 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation
Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev
Abstract:
The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts
Procedia PDF Downloads 31825949 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 11825948 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses
Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau
Abstract:
Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.Keywords: order picking, warehouse, clustering, unsupervised learning
Procedia PDF Downloads 15925947 Empathy in the Work of Physiotherapists in Slovakia
Authors: Vladimir Littva, Peter Kutis
Abstract:
Based on common practice, we know that an empathic approach to a patient is one of the characteristics of a physiotherapist. Although empathy is regarded as an essential condition of the psychotherapeutic relationship, it has taken quite a while for attention to be paid to it in clinical practice. Patients who are experiencing a sense of understanding from health care providers are more willing to cooperate, and treatment within the optimistic attunes a more comfortable framework of care. Age, experience, family, education and the working environment may have an impact on the degree of empathy for paramedics. Within the KEGA project no. 003KU-4-2021, we decided to investigate the level of empathy in the work of physiotherapists in Slovakia. Research sample and Methods: The sample comprised 194 respondents – physiotherapists working on the territory of Slovakia. 112 were men and 82 women. The age of respondents was between 21 and 64 years of age. 133 were married, 51 were single and ten were divorced. 98 were living in the countryside and 96 in towns. Twenty-two grew up without siblings, 95 with one sibling and 77 with two and more siblings. In the survey, we used the Empathy Assessment Questionnaire (EAQ) with 18 questions with four possible answers: strongly disagree, disagree, agree; and strongly agree, which we validated linguistically and psychometrically. All data were statistically processed by SPSS 25. Results: We evaluated the intrinsic reliability of the questionnaire EAQ using Cronbach's Alpha and the coefficient is 0.756 in the whole set. This means that the questionnaire is a quite strong and reliable measurement tool. The mean for individual questions ranged from 2.39 to 3.74 (maximum was 4). In Pearson's correlations, we confirmed the significant differences between the groups regarding sex in 8 questions out of 18, regarding age in 5 questions, regarding family status in 4 questions and regarding siblings in 4 questions out of 18 at the level 5% (p <0.05). Conclusion: The results obtained during the research show the importance of adequate communication with the patient due to his health and well-being. Empathy in the physiotherapists’ profession is very important. It would be worthwhile if the students of physiotherapy would receive a course during their study that would deal exclusively with empathy, empathic approach, burnout, or psycho-emotional hygiene.Keywords: empathy, approach, clinical practice, physiotherapists
Procedia PDF Downloads 18625946 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem
Authors: Fatemeh Torfi
Abstract:
Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.Keywords: fuzzy least-squares, stochastic, location, routing problems
Procedia PDF Downloads 43425945 Applied Theory Building to Achieve Success in Iran Municipalities
Authors: Morteza Rahiminejad
Abstract:
There are over 1200 cities and municipalities all around Iran, including 30 mega cities, which municipal organizations, Interior ministries, and city councils supervise. Even so, there has been neither any research about the process of success nor performance assessment in municipalities. In this research an attempt is made to build a comprehensive theory (or model) to show the reasons or success process among the local governments. The present research is based on the contingency approach in which the relevant circumstances are important, and both environment and situations call for their own management methods. The methodology of research is grounded theory, which uses Atlas.ti software as a tool.Keywords: success, municipality, Iran, theory building
Procedia PDF Downloads 3725944 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain
Authors: Alba Ballester Ciuró, Marc Pares Franzi
Abstract:
While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment
Procedia PDF Downloads 21125943 Vocal Training and Practice Methods: A Glimpse on the South Indian Carnatic Music
Authors: Raghavi Janaswamy, Saraswathi K. Vasudev
Abstract:
Music is one of the supreme arts of expressions, next to the speech itself. Its evolution over centuries has paved the way with a variety of training protocols and performing methods. Indian classical music is one of the most elaborate and refined systems with immense emphasis on the voice culture related to range, breath control, quality of the tone, flexibility and diction. Several exercises namely saraliswaram, jantaswaram, dhatuswaram, upper stayi swaram, alamkaras and varnams lay the required foundation to gain the voice culture and deeper understanding on the voice development and further on to the intricacies of the raga system. This article narrates a few of the Carnatic music training methods with an emphasis on the advanced practice methods for articulating the vocal skills, continuity in the voice, ability to produce gamakams, command in the multiple speeds of rendering with reasonable volume. The creativity on these exercises and their impact on the voice production are discussed. The articulation of the outlined conscious practice methods and vocal exercises bestow the optimum use of the natural human vocal system to not only enhance the signing quality but also to gain health benefits.Keywords: Carnatic music, Saraliswaram, Varnam, vocal training
Procedia PDF Downloads 17725942 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.Keywords: transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment
Procedia PDF Downloads 16925941 Preparation of MgO Nanoparticles by Green Methods
Authors: Maryam Sabbaghan, Pegah Sofalgar
Abstract:
Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.Keywords: MgO, ionic liquid, nanoparticles, green chemistry
Procedia PDF Downloads 29025940 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 6225939 A Survey on Concurrency Control Methods in Distributed Database
Authors: Seyed Mohsen Jameii
Abstract:
In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.Keywords: distributed database, two phase locking protocol, transaction, concurrency
Procedia PDF Downloads 35225938 Collaborative Learning Aspect for Training Hip and Knee Joint Anatomy
Authors: Nasir Mustafa
Abstract:
One of the prerequisites required for an efficient diagnosis in a medical practice is to have a strong command of both functional and clinical anatomy. In this study, we introduce a new collaborative approach to the effective teaching of the knee and hip joints. In the present teaching model, anatomists, orthopedists and physical therapists present the anatomy of the hip and knee joints in small groups. Courses for the hip and knee joints were scheduled during the early stages of the medical curriculum. Students of nursing and physical therapy were grouped together to sensitize to the importance of a collaborative effort. The study results clearly demonstrate that nursing students and physical therapy students appreciated this teaching approach. The collaborative approach further proved to be a suitable method to teach both functional and clinical anatomy of the hip and knee joints. Aside from this training, a collaborative approach between medical students and physical therapy students was also successful for a healthcare organization.Keywords: hip and knee joint anatomy, collaborative, Anatomy teaching, Nursing students, Physiotherapy students
Procedia PDF Downloads 9325937 Government Credit Card in State Financial Management: Public Sector Innovation in Indonesia
Authors: Paramita Nur Kurniati, Stanislaus Riyanta
Abstract:
In the midst of the heightened usage of electronic money (e-money), Indonesian government expenditure is yet governed through cash-basis transactions. This conventional system brings about a number of potential risks and obstacles to operational conduct, including state financial liquidity issue. Consequently, Ministry of Finance is currently establishing the cashless payment methods for State Budget (APBN). Included in those advance methods is credit card facility as a government expenditure payment scheme. This policy is one of the innovations within the public sector learned from other countries’ best practices. Moreover, this particular method is already prominent within the private-sector realm. Qualitative descriptive analysis technique is implemented to evaluate the contemporary innovation of using government credit card in the path towards cashless society. This approach is expected to generate several benefits for the government, particularly in minimizing corruption within the state financial management. Effective coordination among policy makers and policy implementers is essential for the success of this policy’s exercise, without neglecting prudence and public transparency aspects. Government credit card usage shall be the potent resolution for enhancing the government’s overall public service performance.Keywords: cashless basis, cashless society, government credit card, public sector innovation
Procedia PDF Downloads 14925936 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents
Authors: Düzgün Akmaz, Hüseyin Erişti
Abstract:
In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.Keywords: parallel active power filters, harmonic compensation, power quality, harmonics
Procedia PDF Downloads 45925935 Video Text Information Detection and Localization in Lecture Videos Using Moments
Authors: Belkacem Soundes, Guezouli Larbi
Abstract:
This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.Keywords: text detection, text localization, lecture videos, pseudo zernike moments
Procedia PDF Downloads 15225934 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges
Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour
Abstract:
The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model
Procedia PDF Downloads 8125933 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna
Authors: Kholod Khairy Salama, Shabban Hassan Thabet
Abstract:
In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR
Procedia PDF Downloads 7625932 Opportunities and Challenges to Local Legislation at the Height of the COVID-19 Pandemic: Evidence from a Fifth Class Municipality in the Visayas, Philippines
Authors: Renz Paolo B. Ramos, Jake S. Espina
Abstract:
The Local Government Academy of the Philippines explains that Local legislation is both a power and a process by which it enacts ordinances and resolutions that have the force and effect of law while engaging with a range of stakeholders for their implementation. Legislative effectiveness is crucial for the development of any given area. This study's objective is to evaluate the legislative performance of the 10th Sangguniang of Kawayan, a legislative body in a fifth-class municipality in the Province of Biliran, during the height of the COVID-19 pandemic (2019-2021) with a focus on legislation, accountability, and participation, institution-building, and intergovernmental relations. The aim of the study was that a mixed-methods strategy was used to gather data. The Local Legislative Performance Appraisal Form (LLPAF) was completed, while Focus Interviews for Local Government Unit (LGU) personnel, a survey questionnaire for constituents, and ethnographic diary-writing were conducted. Convenience Sampling was utilized for LGU workers, whereas Simple Random Sampling was used to identify the number of constituents participating. Interviews were analyzed using thematic analysis, while frequency data analysis was employed to describe and evaluate the nature and connection of the data to the underlying population. From this data, the researchers draw opportunities and challenges met by the local legislature during the height of the pandemic.Keywords: local legislation, local governance, legislative effectiveness, legislative analysis
Procedia PDF Downloads 6925931 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 114