Search results for: low-temperature district heating network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7118

Search results for: low-temperature district heating network

5258 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

Authors: Kalyani Kulkarni, Bharat Chaudhari

Abstract:

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.

Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation

Procedia PDF Downloads 480
5257 Organic Thin-Film Transistors with High Thermal Stability

Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk

Abstract:

Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.

Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology

Procedia PDF Downloads 349
5256 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana

Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah

Abstract:

With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.

Keywords: actors, development, sustainable energy, network governance, renewable energy transition

Procedia PDF Downloads 89
5255 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
5254 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia PDF Downloads 385
5253 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 94
5252 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
5251 A Global Business Network Built on Hive: Two Use Cases: Buying and Selling of Products and Services and Carrying Out of Social Impact Projects

Authors: Gheyzer Villegas, Edgardo Cedeño, Veruska Mata, Edmundo Chauran

Abstract:

One of the most significant changes that occurred in global commerce was the emergence of cryptocurrencies and blockchain technology. There is still much debate about the adoption of the economic model based on crypto assets, and myriad international projects and initiatives are being carried out to try and explore the potential that this new field offers. The Hive blockchain is a prime example of this, featuring two use cases: of how trade based on its native currencies can give successful results in the exchange of goods and services and in the financing of social impact projects. Its decentralized management model and visionary administration of its development fund have become a key part of its success.

Keywords: Hive, business, network, blockchain

Procedia PDF Downloads 68
5250 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 144
5249 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
5248 Development of a Cathode-Type Ca1-xSrxMnO3

Authors: A. Guemache, M. Omari

Abstract:

Oxides with formula Ca1-xSrx MnO3 (0≤x≤0.2) were synthesized using co-precipitation method. The identification of the obtained phase was carried out using infrared spectroscopy and X-ray diffraction. Thermogravimetric and differential analysis was permitted to characterize different transformations of precursors which take place during one heating cycle. The study of electrochemical behavior was carried out by cyclic voltammetry and impedance spectroscopy. The obtained results show that apparent catalytic activity improved when increasing the concentration of strontium. Anodic current densities varies from 1.3 to 5.9 mA/cm2 at the rate scan of 20 mV.s-1 and a potential 0.8 V for oxides with composition x=0 to 0.2.

Keywords: oxide, co-precipitation, electrochemical properties, cathode-type

Procedia PDF Downloads 290
5247 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
5246 An Application of Graph Theory to The Electrical Circuit Using Matrix Method

Authors: Samai'la Abdullahi

Abstract:

A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.

Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table

Procedia PDF Downloads 561
5245 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
5244 Nighttime Dehaze - Enhancement

Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout

Abstract:

In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.

Keywords: dehazing, image enhancement, nighttime, computer vision

Procedia PDF Downloads 157
5243 Nutritional Status of Rural Women in Bengaluru Rural District of Karnataka, India

Authors: A. M. Maruthesh, B. M. Anandakumar, O. Kumara, Akshatha Gombi, S. R. Rajini

Abstract:

Women play a vital role in ensuring proper development and growth of children. They also contribute significantly towards income generation, food preparation and health. Nutritional status reflects the health of a person and is influenced by the quality of foods eaten and the ability of the body to utilize these foods to meet its needs it is affected by various socio-economic factors including income, family size, occupation and educational status of the people. The study was undertaken on nutritional status of rural women in Heggadehalli of Doddaballapurtaluk and Venkathalli of Devanahallitaluk in Bengaluru rural district with the sample size of 200 respondents. The prevalence of symptoms of malnutrition in a community is in turn a reflection of dietary consumption of its members. Mean anthropometric measurement of rural women were 153.8 cm of height, 46.8 kg of weight. In comparison with the mean BMI standards, it was observed that 20 percent of women were under nourished, 64 percent of women were normal and 16 percent women were obese. In comparison with the mean waist/hip ratio with standards, it was observed that 84 percent were in normal category and 16 percent were obese. Education, land holding, income and age had significant positive association with anthropometric measurements of rural women. The deficient level of haemoglobin existed in 53 percent of rural women, low in 20 percent and only 27 percent had acceptable level. The occurrence of morbidity symptoms was higher in rural women, its illness reported among women in the study were pain in hands and legs, backache, headache, pain in abdomen, fever, weakness, cold and cough and acidity. This may be due to considerable amount of workload on women who spend 8 to 9 hours at work and after returning continue their day’s work at home also.

Keywords: anthrometry, body index, hemoglobin, nutrient deficiency, rural women, nutritional status

Procedia PDF Downloads 266
5242 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 219
5241 Internal and External Influences on the Firm Objective

Authors: A. Briseno, A, Zorrilla

Abstract:

Firms are increasingly responding to social and environmental claims from society. Practices oriented to attend issues such as poverty, work equality, or renewable energy, are being implemented more frequently by firms to address impacts on sustainability. However, questions remain on how the responses of firms vary across industries and regions between the social and the economic objectives. Using concepts from organizational theory and social network theory, this paper aims to create a theoretical framework that explains the internal and external influences that make a firm establish its objective. The framework explains why firms might have a different objective orientation in terms of its economic and social prioritization.

Keywords: organizational identity, social network theory, firm objective, value maximization, social responsibility

Procedia PDF Downloads 308
5240 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 164
5239 Exploring Determinants of Farmers` Perceptions of Domestic Compost Production in Urban Agriculture

Authors: Chethika Gunasiri Wadumestrige Dona, Geetha Mohan, Kensuke Fukushi

Abstract:

Solid waste in urban areas, especially from organic materials like garden waste, food, and degradable sources, can create health and environmental problems if not managed properly. Urban agriculture has emerged as a potential solution in developing countries to mitigate these issues. It offers the possibility of low-carbon economies and knowledge and innovation dissemination. Domestic composting is a significant aspect of urban agriculture, and its success relies on the attitudes of those who practice it. This study examines the perspectives of 402 urban farmers in the Colombo District, Sri Lanka, regarding domestic compost production. It aims to identify the factors that influence these perspectives. The research found that urban farmers are willing to participate in domestic composting because they believe that it facilitates effective recycling of organic waste within their households. The study used an ordinal regression model to determine the factors that shape farmers' perspectives. Age, family size, and crop preferences are significant determinants of the adoption of domestic composting practices among urban farmers in the Colombo District. These findings highlight the importance of understanding and addressing farmers' attitudes in designing effective waste management strategies. In addition, the study also emphasizes the need for tailored interventions that align with farmers' beliefs and preferences to enhance the adoption and implementation of domestic composting practices in urban areas. The insights gained from this study contribute to the academic discourse and offer practical guidance for policymakers and urban planners seeking to promote sustainable waste management practices and support the adoption of urban agriculture in the broader context of urban development.

Keywords: urban agriculture, domestic composting, farmers` perspectives, sustainable urban development

Procedia PDF Downloads 37
5238 Distribution and Habitat Preference of Red Panda (Ailurus Fulgens Fulgens) in Jumla District, Nepal

Authors: Saroj Panthi, Sher Singh Thagunna

Abstract:

Reliable and sufficient information regarding status, distribution and habitat preference of red panda (Ailurus fulgens fulgens) is lacking in Nepal. The research activities on red panda in the mid-western Nepal are very limited, so the status of red panda in the region is quite unknown. The study conducted during May, 2013 in three Village Development Committees (VDCs) namely Godhemahadev, Malikathata and Tamti of Jumla district was an important step for providing vital information including distribution and habitat preference of this species. The study included the reconnaissance, key informants survey, interviews, and consultation for the most potential area identification, opportunistic survey comprising the direct observation and indirect sign count method for the presence and distribution, habitat assessment consisting vegetation sampling and ocular estimation. The study revealed the presence of red panda in three forests namely Bahirepatan, Imilchadamar and Tyakot of Godhemahadev, Tamti and Malikathata VDCs respectively. The species was found distributed between 2880 and 3244 m with an average dropping encounter rate of 1.04 per hour of searching effort and 12 pellets per dropping. Red panda mostly preferred the habitat in the elevation range of 2900 - 3000 m with southwest facing steep slopes (36˚ - 45˚), associated with water sources at the distance of ≤100 m. Trees such as Acer spp., Betula utilis and Quercus semecarpifolia, shrub species of Elaeagnus parvifolia, Drepanostachyum spp. and Jasminum humile, and the herbs like Polygonatum cirrhifolium, Fragaria nubicola and Galium asperifolium were found to be the most preferred species by red panda. The red panda preferred the habitat with dense crown coverage ( >20% - 100%) and 31% - 50% ground cover. Fallen logs (39%) were the most preferred substrate used for defecation.

Keywords: distribution, habitat preference, jumla, red panda

Procedia PDF Downloads 309
5237 Market Value of Ethno-Medicinally Important Plants of the Dughalgay Valley District Swat, Pakistan

Authors: Akbar Zeb, Shujaul Mulk Khan, Habib Ahmad, Manzoor Hussain, Mujtaba Shah

Abstract:

An ethnobotanical project was carried out in the Dughalgay valley District Swat in Hindu Kush region. The Local population not only use indigenous knowledge to use medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local markets. An ethnobotanical project was carried out in the Doghalgay valley of upper Swat. The Local population not only use indigenous medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local market. 102 of these medicinal plants were reported to be used in the region during questionnaire survey in spring 2007. Out of them 10 species are used as diuretic, 9 in stomachic and laxative each. Similarly 6, 5, 5, 4, 4, and 4 species of them are used as antiseptic, Anthelmintic, Carminative, Expectorant, Astringent and purgative respectively, while the remaining species have one or more than one medicinal use in the local community. 30 of these species are collected for marketing purposes, in which these medicinal plants such as Berberis lycium, Origanum vulgare, Bergenia ciliata, Aesculus indica, Podophyllum emodi, Pteredium aquilinum, Bergenia himalyca, Viola spp., Ajuga bracteosa, Morchella esculenta, Paeonia emodi, Atropa acuminate, Aconitum violaceum, Polygonum amplexicaulis, Bupleurum longicaule, Juglans regia, Diospyrus lotus, and Mentha longifolia are important. Study concluded that availability of medicinal plants is decreasing day by day due to human population pressure, marketing pressure, grazing and unwise collection. Therefore it is recommended that Governmental organizations and non Governmental organization should pay possible attention to make aware the local people about the future threats.

Keywords: indigenous knowledge, ethnomedicinal uses, marketing, Hindu Kush

Procedia PDF Downloads 503
5236 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
5235 A Multi-Perspective, Qualitative Study into Quality of Life for Elderly People Living at Home and the Challenges for Professional Services in the Netherlands

Authors: Hennie Boeije, Renate Verkaik, Joke Korevaar

Abstract:

In Dutch national policy, it is promoted that the elderly remain living at home longer. They are less often admitted to a nursing home or only later in life. While living at home, it is important that they experience a good quality of life. Care providers in primary care support this. In this study, it was investigated what quality of life means for the elderly and which characteristics care should have that supports living at home longer with quality of life. To explore this topic, a qualitative methodology was used. Four focus groups were conducted: two with elderly people who live at home and their family caregivers, one with district nurses employed in-home care services and one with elderly care physicians working in primary care. Next to this individual interviews were employed with general practitioners (GPs). In total 32 participants took part in the study. The data were thematically analysed with MaxQDA software for qualitative analysis and reported. Quality of life is a multi-faceted term for elderly. The essence of their description is that they can still undertake activities that matter to them. Good physical health, mental well-being and social connections enable them to do this. Own control over their life is important for some. They are of opinion that how they experience life and manage old age is related to their resilience and coping. Key terms in the definitions of quality of life by GPs are also physical and mental health and social contacts. These are the three pillars. Next, to this elderly care, physicians mention security and safety and district nurses add control over their own life and meaningful daily activities. They agree that with frail elderly people, the balance is delicate and a change in one of the three pillars can cause it to collapse like a house of cards. When discussing what support is needed, professionals agree on access to care with a low threshold, prevention, and life course planning. When care is provided in a timely manner, a worsening of the situation can be prevented. They agree that hospital care often is not needed since most of the problems with the elderly have to do with care and security rather than with a cure per se. GPs can consult elderly care physicians to lower their workload and to bring in specific knowledge. District nurses often signal changes in the situation of the elderly. According to them, the elderly predominantly need someone to watch over them and provide them with a feeling of security. Life course planning and advance care planning can contribute to uniform treatment in line with older adults’ wishes. In conclusion, all stakeholders, including elderly persons, agree on what entails quality of life and the quality of care that is needed to support that. A future challenge is to shape conditions for the right skill mix of professionals, cooperation between the professions and breaking down differences in financing and supply. For the elderly, the challenge is preparing for aging.

Keywords: elderly living at home, quality of life, quality of care, professional cooperation, life course planning, advance care planning

Procedia PDF Downloads 128
5234 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
5233 Information Literacy Skills of Legal Practitioners in Khyber Pakhtunkhwa-Pakistan: An Empirical Study

Authors: Saeed Ullah Jan, Shaukat Ullah

Abstract:

Purpose of the study: The main theme of this study is to explore the information literacy skills of the law practitioners in Khyber Pakhtunkhwa-Pakistan under the heading "Information Literacy Skills of Legal Practitioners in Khyber Pakhtunkhwa-Pakistan: An Empirical Study." Research Method and Procedure: To conduct this quantitative study, the simple random sample approach is used. An adapted questionnaire is distributed among 254 lawyers of Dera Ismail Khan through personal visits and electronic means. The data collected is analyzed through SPSS (Statistical Package for Social Sciences) software. Delimitations of the study: The study is delimited to the southern district of Khyber Pakhtunkhwa: Dera Ismael Khan. Key Findings: Most of the lawyers of District Dera Ismail Khan of Khyber Pakhtunkhwa can recognize and understand the needed information. A large number of lawyers are capable of presenting information in both written and electronic forms. They are not comfortable with different legal databases and using various searching and keyword techniques. They have less knowledge of Boolean operators for locating online information. Conclusion and Recommendations: Efforts should be made to arrange refresher courses and training workshops on the utilization of different legal databases and different search techniques for retrieval of information sources. This practice will enhance the information literacy skills of lawyers, which will ultimately result in a better legal system in Pakistan. Practical implication(s): The findings of the study will motivate the policymakers and authorities of legal forums to restructure the information literacy programs to fulfill the lawyers' information needs. Contribution to the knowledge: No significant work has been done on the lawyers' information literacy skills in Khyber Pakhtunkhwa-Pakistan. It will bring a clear picture of the information literacy skills of law practitioners and address the problems faced by them during the seeking process.

Keywords: information literacy-Pakistan, infromation literacy-lawyers, information literacy-lawyers-KP, law practitioners-Pakistan

Procedia PDF Downloads 149
5232 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
5231 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis

Authors: Robert Saputra, Tomas Havlicek

Abstract:

This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.

Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance

Procedia PDF Downloads 14
5230 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
5229 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86