Search results for: artificial reasoning
544 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 293543 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion
Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab
Abstract:
Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.Keywords: air jet loom, twist per inch, twist loss, weft yarn
Procedia PDF Downloads 403542 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 134541 Experiencing Daylight in Architectural Spaces: A Case Study of Public Buildings in the Context of Karachi, Pakistan
Authors: Safia Asif, Saadia Bano
Abstract:
In a world with rapidly depleting resources, using artificial lighting during daytime is an act of human ignorance. Imitated light is the major source of energy consumption in public buildings. Despite, the fact that substantial working hours of these buildings usually persist in natural daylight time; there is a trend of isolated, un-fenestrated and a-contextual interiors majorly dependent on active energy sources. On the contrary, if direct and un-controlled sunlight is allowed inside the building, it will create visual and thermal discomfort. Controlled daylighting with appropriate design mechanisms is one of the important aspects of achieving thermal and visual comfort. The natural sunlight can be utilized intelligently with the help of architectural thermal controlling mechanisms to achieve a healthy and productive environment. This paper is an attempt to investigate and analyze the importance of daylighting with reference to energy efficiency and thermal comfort. For this purpose, three public buildings including two educational institutions and one general post office are selected, as case-studies in the context of Karachi, Pakistan. Various parameters of visual and thermal comfort are analyzed which includes orientation, ceiling heights, overall building profile along with daylight controlling mechanisms in terms of penetration, distribution, protection, and control. In the later part of the research, a questionnaire survey is also conducted to evaluate the user experience in terms of adequate daylighting and thermal comfort.Keywords: daylight, public buildings, sustainable architecture, visual and thermal comfort
Procedia PDF Downloads 210540 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 184539 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 111538 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules
Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel
Abstract:
The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling
Procedia PDF Downloads 131537 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 50536 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 172535 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder
Procedia PDF Downloads 131534 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 110533 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 503532 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 76531 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems
Procedia PDF Downloads 174530 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 273529 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 115528 Supernatural Beliefs Impact Pattern Perception
Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr
Abstract:
A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.Keywords: culture, esoteric belief, pattern perception, religiosity
Procedia PDF Downloads 187527 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 100526 Influence of Age on Some Testicular and Spermatic Parameters in Kids and Bucks in Local Breed Arbia in Algeria
Authors: Boukhalfa Djemouai, Belkadi Souhila, Safsaf Boubakeur
Abstract:
To increase the profitability of the national herd so that it can meet the needs of the population, Algeria has proceeded to the introduction of new reproductive biotechnologies, including artificial insemination on natural heat, by induction and heat synchronization. This biotechnology uses the male way for the creation and dissemination of genetic progress. The study has focused on 30 goat kids and bucks local breed aged between 03 and 24 months, divided into 03 groups 03-06 months[Grp 1; n=9], 07-10 months [Grp 2; n=13] and 11-24 months [Grp 3; n=8], in order to determine the influence of age on testicular evolution by measurements of testis and scrotum, and the epididymis sperm parameters evaluation. These parameters are influenced by age variations (sperm and spermocytogram). The examined parameters have focused on testicular weight (grams), the scrotal circumference (cm), mass mobility (%), vitality rate (%), sperm concentration (x 109), and percentage of abnormal spermatozoa (%). The ANOVA reveals a significance effect of age on parameters: testis weight, scrotal circumference, sperm concentration, motility varying between high (p < 0.01) to very high significance (p < 0.001), while in viability and abnormalities no significance was observed between all groups. The value of these parameters increased significantly until the age of 02 years, while that of sperm abnormalities has increased in Grp2. The histological study of testicular development shows that the genetic spermatozoa function characterized by cell proliferation, which is more and more intense starting from the age of 05 months and can be considered as an age of puberty in the local breed goat Arbia and increases with animal age.Keywords: kids and bucks, epididymis sperm, testicular measurements, Arbia breed
Procedia PDF Downloads 132525 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 276524 Multicriteria for Optimal Land Use after Mining
Authors: Carla Idely Palencia-Aguilar
Abstract:
Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.Keywords: ASTER, Geostatistics, MODIS, Multicriteria
Procedia PDF Downloads 126523 Covalently Conjugated Gold–Porphyrin Nanostructures
Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino
Abstract:
Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures
Procedia PDF Downloads 155522 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 322521 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 93520 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 69519 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations
Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar
Abstract:
Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket
Procedia PDF Downloads 182518 Effect of Varying Diets on Growth, Development and Survival of Queen Bee (Apis mellifera L.) in Captivity
Authors: Muhammad Anjum Aqueel, Zaighum Abbas, Mubasshir Sohail, Muhammad Abubakar, Hafiz Khurram Shurjeel, Abu Bakar Muhammad Raza, Muhammad Afzal, Sami Ullah
Abstract:
Keeping in view the increasing demand, queen of Apis mellifera L. (Hymenoptera: Apidae) was reared artificially in this experiment at varying diets including royal jelly. Larval duration, pupal duration, weight, and size of pupae were evaluated at different diets including royal jelly. Queen larvae were raised by Doo Little grafting method. Four different diets were mixed with royal jelly and applied to larvae. Fructose, sugar, yeast, and honey were provided to rearing queen larvae along with same amount of royal jelly. Larval and pupal duration were longest (6.15 and 7.5 days, respectively) at yeast and shortest on honey (5.05 and 7.02 days, respectively). Heavier and bigger pupae were recorded on yeast (168.14 mg and 1.76 cm, respectively) followed by diets having sugar and honey. Due to production of heavier and bigger pupae, yeast was considered as best artificial diet for the growing queen larvae. So, in the second part of experiment, different amounts of yeast were provided to growing larvae along with fixed amount (0.5 g) of royal jelly. Survival rates of the larvae and queen bee were 70% and 40% in the 4-g food, 86.7% and 53.3% in the 6-g food, and 76.7% and 50% in the 8-g food. Weight of adult queen bee (1.459±0.191 g) and the number of ovarioles (41.7±21.3) were highest at 8 g of food. Results of this study are helpful for bee-keepers in producing fitter queen bees.Keywords: apis melifera l, dietary effect, survival and development, honey bee queen
Procedia PDF Downloads 490517 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization
Procedia PDF Downloads 133516 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 179515 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation
Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun
Abstract:
The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence
Procedia PDF Downloads 332