Search results for: energy performance
417 Importance of Macromineral Ratios and Products in Association with Vitamin D in Pediatric Obesity Including Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Metabolisms of macrominerals, those of calcium, phosphorus and magnesium, are closely associated with the metabolism of vitamin D. Particularly magnesium, the second most abundant intracellular cation, is related to biochemical and metabolic processes in the body, such as those of carbohydrates, proteins and lipids. The status of each mineral was investigated in obesity to some extent. Their products and ratios may possibly give much more detailed information about the matter. The aim of this study is to investigate possible relations between each macromineral and some obesity-related parameters. This study was performed on 235 children, whose ages were between 06-18 years. Aside from anthropometric measurements, hematological analyses were performed. TANITA body composition monitor using bioelectrical impedance analysis technology was used to establish some obesity-related parameters including basal metabolic rate (BMR), total fat, mineral and muscle masses. World Health Organization body mass index (BMI) percentiles for age and sex were used to constitute the groups. The values above 99th percentile were defined as morbid obesity. Those between 95th and 99th percentiles were included into the obese group. The overweight group comprised of children whose percentiles were between 95 and 85. Children between the 85th and 15th percentiles were defined as normal. Metabolic syndrome (MetS) components (waist circumference, fasting blood glucose, triacylglycerol, high density lipoprotein cholesterol, systolic pressure, diastolic pressure) were determined. High performance liquid chromatography was used to determine Vitamin D status by measuring 25-hydroxy cholecalciferol (25-hydroxy vitamin D3, 25(OH)D). Vitamin D values above 30.0 ng/ml were accepted as sufficient. SPSS statistical package program was used for the evaluation of data. The statistical significance degree was accepted as p < 0.05. The important points were the correlations found between vitamin D and magnesium as well as phosphorus (p < 0.05) that existed in the group with normal BMI values. These correlations were lost in the other groups. The ratio of phosphorus to magnesium was even much more highly correlated with vitamin D (p < 0.001). The negative correlation between magnesium and total fat mass (p < 0.01) was confined to the MetS group showing the inverse relationship between magnesium levels and obesity degree. In this group, calcium*magnesium product exhibited the highest correlation with total fat mass (p < 0.001) among all groups. Only in the MetS group was a negative correlation found between BMR and calcium*magnesium product (p < 0.05). In conclusion, magnesium is located at the center of attraction concerning its relationships with vitamin D, fat mass and MetS. The ratios and products derived from macrominerals including magnesium have pointed out stronger associations other than each element alone. Final considerations have shown that unique correlations of magnesium as well as calcium*magnesium product with total fat mass have drawn attention particularly in the MetS group, possibly due to the derangements in some basic elements of carbohydrate as well as lipid metabolism.Keywords: macrominerals, metabolic syndrome, pediatric obesity, vitamin D
Procedia PDF Downloads 113416 Corporate Governance and Disclosure Practices of Listed Companies in the ASEAN: A Conceptual Overview
Authors: Chen Shuwen, Nunthapin Chantachaimongkol
Abstract:
Since the world has moved into a transitional period, known as globalization; the business environment is now more complicated than ever before. Corporate information has become a matter of great importance for stakeholders, in order to understand the current situation. As a result of this, the concept of corporate governance has been broadly introduced to manage and control the affairs of corporations while businesses are required to disclose both financial and non-financial information to public via various communication channels such as the annual report, the financial report, the company’s website, etc. However, currently there are several other issues related to asymmetric information such as moral hazard or adverse selection that still occur intensively in workplaces. To prevent such problems in the business, it is required to have an understanding of what factors strengthen their transparency, accountability, fairness, and responsibility. Under aforementioned arguments, this paper aims to propose a conceptual framework that enables an investigation on how corporate governance mechanism influences disclosure efficiency of listed companies in the Association of Southeast Asia Nations (ASEAN) and the factors that should be considered for further development of good behaviors, particularly in regards to voluntary disclosure practices. To achieve its purpose, extensive reviews of literature are applied as a research methodology. It is divided into three main steps. Firstly, the theories involved with both corporate governance and disclosure practices such as agency theory, contract theory, signaling theory, moral hazard theory, and information asymmetry theory are examined to provide theoretical backgrounds. Secondly, the relevant literatures based on multi- perspectives of corporate governance, its attributions and their roles on business processes, the influences of corporate governance mechanisms on business performance, and the factors determining corporate governance characteristics as well as capability are reviewed to outline the parameters that should be included in the proposed model. Thirdly, the well-known regulatory document OECD principles and previous empirical studies on the corporate disclosure procedures are evaluated to identify the similarities and differentiations with the disclosure patterns in the ASEAN. Following the processes and consequences of the literature review, abundant factors and variables are found. Further to the methodology, additional critical factors that also have an impact on the disclosure behaviors are addressed in two groups. In the first group, the factors which are linked to the national characteristics - the quality of national code, legal origin, culture, the level of economic development, and so forth. Whereas in the second group, the discoveries which refer to the firm’s characteristics - ownership concentration, ownership’s rights, controlling group, and so on. However, because of research limitations, only some literature are chosen and summarized to form part of the conceptual framework that explores the relationship between corporate governance and the disclosure practices of listed companies in ASEAN.Keywords: corporate governance, disclosure practice, ASEAN, listed company
Procedia PDF Downloads 192415 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education
Authors: Thomas Turner
Abstract:
Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.Keywords: case-based learning, online, problem-based learning, remote, virtual
Procedia PDF Downloads 76414 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal
Authors: Saikat Majumdar, D. C. Kalita
Abstract:
The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.Keywords: agricultural infrastructure, adoption of technology, farm income, road network
Procedia PDF Downloads 99413 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma
Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov
Abstract:
Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.Keywords: electrical contact, material, nanocomposite, plasma, synthesis
Procedia PDF Downloads 234412 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube
Authors: Alak Kumar Patra, Nilanjan Mitra
Abstract:
Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite
Procedia PDF Downloads 301411 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies
Authors: Hideaki Endo, Mika Goto
Abstract:
The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency
Procedia PDF Downloads 73410 Puereria mirifica Replacement Improves Skeletal Muscle Performance Associated with Increasing Parvalbumin Levels in Ovariectomized Rat
Authors: Uraporn Vongvatcharanon, Kochakorn Sukjan, Wandee Udomuksorn, Ekkasit Kumarnsit, Surapong Vongvatcharanon
Abstract:
Sarcopenia is a loss of muscle mass, and strength frequently found in menopause. Estrogen replacement has been shown to improve such a loss of muscle functions. However, there is an increased risk of cancer that has to be considered because of the estrogen replacement therapy. Thus, phytoestrogen supplementation has been suggested as an alternative therapy. Pueraria mirifica (PM) is a plant in the family Leguminosae, that is known to be phytoestrogen-rich and has been traditionally used for the treatment of menopausal symptoms. It contains isoflavones and other compounds such as miroestrol and its derivatives. Parvalbumin (PV) is a calcium binding protein and functions as a relaxing factor in fast twitch muscle fibers. A decrease of the PV level results in a reduction of the speed of the twitch relaxation. Therefore, this study aimed to investigate the effect of an ethanolic extract from Pueraria mirifica on the estrogen levels, skeletal muscle functions and PV levels in the extensor digitorum longus (EDL) and gastrocnemius of ovariectomized rats. Twelve-week old female Wistar rats (200-250 g) were divided into 6 groups: SHAM (un-ovariectomized rats, that received double distilled water), PM-0 (ovariectomized rats, OVX, receiving double distilled water), E (OVX, receiving an estradiol benzoate dose of 0.04 mg/kg), PM-50 (OVX receiving PM 50 mg/kg), PM-500 (OVX receiving PM 500 mg/kg), PM-1000 (OVX receiving PM 1000 mg/kg) all for 90 days. The PM-0 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation and parvalbumin levels of both EDL and gastrocnemius that were significantly reduced compared to those of the SHAM group (p<0.05). Also the α and β estrogen receptor immunoreactivities and the parvalbumin immunoreactivities of both EDL and gastrocnemius were decreased in the PM-0 group. In contrast the E, PM-50, PM-500 and PM-1000 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation of both EDL and gastrocnemius that were significantly increased compared with PM-0 group (p<0.05). In addition, the α and β estrogen receptor immunoreactivities and parvalbumin immunoreactivity of both the EDL and gastrocnemius were increased in the E, PM-50, PM-500 and PM-1000 group. In addition the extract of Pueraria mirifica replacement group at 50 and 500 mg/kg had significantly increased parvalbumin levels in the EDL muscle but in the gastrocnemius, only the dose of 500 mg/kg increased the parvalbumin levels (p<0.05). These results have demonstrated that the use of the Pueraria mirifica extract as a replacement therapy for estrogen produced estrogenic activity that was similar to that produced by the estradiol benzoate replacement. It seems that the phytoestrogens could bind with the estrogen receptors and stimulate the transcriptional activity to synthesise muscle protein that caused an increase in muscle mass and parvalbumin levels. Thus, muscle synthesis may restore parvalbumin levels resulting in an enhanced relaxation efficiency that would lead to a shortened latent period before the next contraction.Keywords: Puereria mirifica, Parvalbumin, estrogen, ovariectomized rats
Procedia PDF Downloads 381409 Healthcare Providers’ Perception Towards Utilization of Health Information Applications and Its Associated Factors in Healthcare Delivery in Health Facilities in Cape Coast Metropolis, Ghana
Authors: Richard Okyere Boadu, Godwin Adzakpah, Nathan Kumasenu Mensah, Kwame Adu Okyere Boadu, Jonathan Kissi, Christiana Dziyaba, Rosemary Bermaa Abrefa
Abstract:
Information and communication technology (ICT) has significantly advanced global healthcare, with electronic health (e-Health) applications improving health records and delivery. These innovations, including electronic health records, strengthen healthcare systems. The study investigates healthcare professionals' perceptions of health information applications and their associated factors in the Cape Coast Metropolis of Ghana's health facilities. Methods: We used a descriptive cross-sectional study design to collect data from 632 healthcare professionals (HCPs), in the three purposively selected health facilities in the Cape Coast municipality of Ghana in July 2022. Shapiro-Wilk test was used to check the normality of dependent variables. Descriptive statistics were used to report means with corresponding standard deviations for continuous variables. Proportions were also reported for categorical variables. Bivariate regression analysis was conducted to determine the factors influencing the Benefits of Information Technology (BoIT); Barriers to Information Technology Use (BITU); and Motives of Information Technology Use (MoITU) in healthcare delivery. Stata SE version 15 was used for the analysis. A p-value of less than 0.05 served as the basis for considering a statistically significant accepting hypothesis. Results: Healthcare professionals (HCPs) generally perceived moderate benefits (Mean score (M)=5.67) from information technology (IT) in healthcare. However, they slightly agreed that barriers like insufficient computers (M=5.11), frequent system downtime (M=5.09), low system performance (M=5.04), and inadequate staff training (M=4.88) hindered IT utilization. Respondents slightly agreed that training (M=5.56), technical support (M=5.46), and changes in work procedures (M=5.10) motivated their IT use. Bivariate regression analysis revealed significant influences of education, working experience, healthcare profession, and IT training on attitudes towards IT utilization in healthcare delivery (BoIT, BITU, and MoITU). Additionally, the age of healthcare providers, education, and working experience significantly influenced BITU. Ultimately, age, education, working experience, healthcare profession, and IT training significantly influenced MoITU in healthcare delivery. Conclusions: Healthcare professionals acknowledge moderate benefits of IT in healthcare but encounter barriers like inadequate resources and training. Motives for IT use include staff training and support. Bivariate regression analysis shows education, working experience, profession, and IT training significantly influence attitudes toward IT adoption. Targeted interventions and policies can enhance IT utilization in the Cape Coast Metropolis, Ghana.Keywords: health information application, utilization of information application, information technology use, healthcare
Procedia PDF Downloads 64408 Parents as a Determinant for Students' Attitudes and Intentions toward Higher Education
Authors: Anna Öqvist, Malin Malmström
Abstract:
Attaining a higher level of education has become an increasingly important prerequisite for people’s economic and social independence and mobility. Young people who do not pursue higher education are not as attractive as potential employees in the modern work environment. Although completing a higher education degree is not a guarantee for getting a job, it substantially increases the chances for employment and, consequently, the chances for a better life. Despite this, it’s a fact that in several regions in Sweden, fewer students are choosing to engage in higher education. Similar trends have been emphasized in, for instance, the US where high dropout patterns among young people have been noted. This is a threat to future employment and industry development in these regions because the future employment base for society is dependent upon students’ willingness to invest in higher education. Much of prior studies have focused on the role of parents’ involvement in their children’s’ school work and the positive influence parents involvement have on their children’s school performance. Parental influence on education in general has been a topic of interest among those concerned with optimal developmental and educational outcomes for children and youth in pre-, secondary- and high school. Across a range of studies, there has emerged a strong conclusion that parental influence on child and youths education generally benefits children's and youths learning and school success. Arguably then, we could expect that parents influence on whether or not to pursue a higher education would be of importance to understand young people’s choice to engage in higher education. Accordingly, understanding what drives students’ intentions to pursue higher education is an essential component of motivating students to aspire to make the most of their potential in their future work life. Drawing on the theory of planned behavior, this study examines the role of parents influence on students’ attitudes about whether higher education can be beneficial to their future work life. We used a qualitative approach by collecting interview data from 18 high school students in Sweden to capture students’ cognitive and motivational mechanisms (attitudes) to influence intentions to engage in higher education. We found that parents may positively or negatively influence students’ attitudes and subsequently a student's intention to pursue higher education. Accordingly, our results show that parents’ own attitudes and expectations on their children are keys for influencing students’ attitudes and intentions for higher education. Further, our finding illuminates the mechanisms that drive students in one direction or the other. As such, our findings show that the same categories of arguments are used for driving students’ attitudes and intentions in two opposite directions, namely; financial arguments and work life benefits arguments. Our results contribute to existing literature by showing that parents do affect young people’s intentions to engage in higher studies. The findings contribute to the theory of planned behavior and have implications for the literature on higher education and educational psychology and also provide guidance on how to inform students about facts of higher studies in school.Keywords: higher studies, intentions, parents influence, theory of planned behavior
Procedia PDF Downloads 256407 The Role of People in Continuing Airworthiness: A Case Study Based on the Royal Thai Air Force
Authors: B. Ratchaneepun, N.S. Bardell
Abstract:
It is recognized that people are the main drivers in almost all the processes that affect airworthiness assurance. This is especially true in the area of aircraft maintenance, which is an essential part of continuing airworthiness. This work investigates what impact English language proficiency, the intersection of the military and Thai cultures, and the lack of initial and continuing human factors training have on the work performance of maintenance personnel in the Royal Thai Air Force (RTAF). A quantitative research method based on a cross-sectional survey was used to gather data about these three key aspects of “people” in a military airworthiness environment. 30 questions were developed addressing the crucial topics of English language proficiency, impact of culture, and human factors training. The officers and the non-commissioned officers (NCOs) who work for the Aeronautical Engineering Divisions in the RTAF comprised the survey participants. The survey data were analysed to support various hypotheses by using a t-test method. English competency in the RTAF is very important since all of the service manuals for Thai military aircraft are written in English. Without such competency, it is difficult for maintenance staff to perform tasks and correctly interpret the relevant maintenance manual instructions; any misunderstandings could lead to potential accidents. The survey results showed that the officers appreciated the importance of this more than the NCOs, who are the people actually doing the hands-on maintenance work. Military culture focuses on the success of a given mission, and leverages the power distance between the lower and higher ranks. In Thai society, a power distance also exists between younger and older citizens. In the RTAF, such a combination tends to inhibit a just reporting culture and hence hinders safety. The survey results confirmed this, showing that the older people and higher ranks involved with RTAF aircraft maintenance believe that the workplace has a positive safety culture and climate, whereas the younger people and lower ranks think the opposite. The final area of consideration concerned human factors training and non-technical skills training. The survey revealed that those participants who had previously attended such courses appreciated its value and were aware of its benefits in daily life. However, currently there is no regulation in the RTAF to mandate recurrent training to maintain such knowledge and skills. The findings from this work suggest that the people involved in assuring the continuing airworthiness of the RTAF would benefit from: (i) more rigorous requirements and standards in the recruitment, initial training and continuation training regarding English competence; (ii) the development of a strong safety culture that exploits the uniqueness of both the military culture and the Thai culture; and (iii) providing more initial and recurrent training in human factors and non-technical skills.Keywords: aircraft maintenance, continuing airworthiness, military culture, people, Royal Thai Air Force
Procedia PDF Downloads 129406 Contribution of Word Decoding and Reading Fluency on Reading Comprehension in Young Typical Readers of Kannada Language
Authors: Vangmayee V. Subban, Suzan Deelan. Pinto, Somashekara Haralakatta Shivananjappa, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: During early years of schooling, the instruction in the schools mainly focus on children’s word decoding abilities. However, the skilled readers should master all the components of reading such as word decoding, reading fluency and comprehension. Nevertheless, the relationship between each component during the process of learning to read is less clear. The studies conducted in alphabetical languages have mixed opinion on relative contribution of word decoding and reading fluency on reading comprehension. However, the scenarios in alphasyllabary languages are unexplored. Aim and Objectives: The aim of the study was to explore the role of word decoding, reading fluency on reading comprehension abilities in children learning to read Kannada between the age ranges of 5.6 to 8.6 years. Method: In this cross sectional study, a total of 60 typically developing children, 20 each from Grade I, Grade II, Grade III maintaining equal gender ratio between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. The reading fluency and reading comprehension abilities of the children were assessed using Grade level passages selected from the Kannada text book of children core curriculum. All the passages consist of five questions to assess reading comprehension. The pseudoword decoding skills were assessed using 40 pseudowords with varying syllable length and their Akshara composition. Pseudowords are formed by interchanging the syllables within the meaningful word while maintaining the phonotactic constraints of Kannada language. The assessment material was subjected to content validation and reliability measures before collecting the data on the study samples. The data were collected individually, and reading fluency was assessed for words correctly read per minute. Pseudoword decoding was scored for the accuracy of reading. Results: The descriptive statistics indicated that the mean pseudoword reading, reading comprehension, words accurately read per minute increased with the Grades. The performance of Grade III children found to be higher, Grade I lower and Grade II remained intermediate of Grade III and Grade I. The trend indicated that reading skills gradually improve with the Grades. Pearson’s correlation co-efficient showed moderate and highly significant (p=0.00) positive co-relation between the variables, indicating the interdependency of all the three components required for reading. The hierarchical regression analysis revealed 37% variance in reading comprehension was explained by pseudoword decoding and was highly significant. Subsequent entry of reading fluency measure, there was no significant change in R-square and was only change 3%. Therefore, pseudoword-decoding evolved as a single most significant predictor of reading comprehension during early Grades of reading acquisition. Conclusion: The present study concludes that the pseudoword decoding skills contribute significantly to reading comprehension than reading fluency during initial years of schooling in children learning to read Kannada language.Keywords: alphasyllabary, pseudo-word decoding, reading comprehension, reading fluency
Procedia PDF Downloads 260405 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 272404 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group
Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb
Abstract:
Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.Keywords: broadband services, customer experience quality, loyalty, net promoters score
Procedia PDF Downloads 265403 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning
Authors: John Zanetich
Abstract:
Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.Keywords: tacit knowledge, knowledge management, college programs, experiential learning
Procedia PDF Downloads 262402 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load
Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas
Abstract:
The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.Keywords: experimental study, infill wall, infilled frame, masonry wall
Procedia PDF Downloads 173401 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin
Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos
Abstract:
South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project
Procedia PDF Downloads 261400 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent
Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo
Abstract:
Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain
Procedia PDF Downloads 307399 Collaborative Procurement in the Pursuit of Net- Zero: A Converging Journey
Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John
Abstract:
The Architecture, Engineering, and Construction (AEC) sector plays a critical role in the global transition toward sustainable and net-zero built environments. However, the industry faces unique challenges in planning for net-zero while struggling with low productivity, cost overruns and overall resistance to change. Traditional practices fall short due to their inability to meet the requirements for systemic change, especially as governments increasingly demand transformative approaches. Working in silos and rigid hierarchies and a short-term, client-centric approach prioritising immediate gains over long-term benefit stands in stark contrast to the fundamental requirements for the realisation of net-zero objectives. These practices have limited capacity to effectively integrate AEC stakeholders and promote the essential knowledge sharing required to address the multifaceted challenges of achieving net-zero. In the context of built environment, procurement may be described as the method by which a project proceeds from inception to completion. Collaborative procurement methods under the Integrated Practices (IP) umbrella have the potential to align more closely with net-zero objectives. This paper explores the synergies between collaborative procurement principles and the pursuit of net zero in the AEC sector, drawing upon the shared values of cross-disciplinary collaboration, Early Supply Chain involvement (ESI), use of standards and frameworks, digital information management, strategic performance measurement, integrated decision-making principles and contractual alliancing. To investigate the role of collaborative procurement in advancing net-zero objectives, a structured research methodology was employed. First, the study focuses on a systematic review on the application of collaborative procurement principles in the AEC sphere. Next, a comprehensive analysis is conducted to identify common clusters of these principles across multiple procurement methods. An evaluative comparison between traditional procurement methods and collaborative procurement for achieving net-zero objectives is presented. Then, the study identifies the intersection between collaborative procurement principles and the net-zero requirements. Lastly, an exploration of key insights for AEC stakeholders focusing on the implications and practical applications of these findings is made. Directions for future development of this research are recommended. Adopting collaborative procurement principles can serve as a strategic framework for guiding the AEC sector towards realising net-zero. Synergising these approaches overcomes fragmentation, fosters knowledge sharing, and establishes a net-zero-centered ecosystem. In the context of the ongoing efforts to amplify project efficiency within the built environment, a critical realisation of their central role becomes imperative for AEC stakeholders. When effectively leveraged, collaborative procurement emerges as a powerful tool to surmount existing challenges in attaining net-zero objectives.Keywords: collaborative procurement, net-zero, knowledge sharing, architecture, built environment
Procedia PDF Downloads 71398 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending
Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel
Abstract:
Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear
Procedia PDF Downloads 109397 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 266396 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 146395 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment
Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues
Abstract:
Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.
Procedia PDF Downloads 210394 Recovering Trust in Institutions through Networked Governance: An Analytical Approach via the Study of the Provincial Government of Gipuzkoa
Authors: Xabier Barandiaran, Igone Guerra
Abstract:
The economic and financial crisis that hit European countries in 2008 revealed the inability of governments to respond unilaterally to the so-called “wicked” problems that affect our societies. Closely linked to this, the increasing disaffection of citizens towards politics has resulted in growing distrust of the citizenry not only in the institutions in general but also in the political system, in particular. Precisely, these two factors provoked the action of the local government of Gipuzkoa (Basque Country) to move from old ways of “doing politics” to a new way of “thinking politics” based on a collaborative approach, in which innovative modes of public decision making are prominent. In this context, in 2015, the initiative Etorkizuna Eraikiz (Building the Future), a contemporary form of networked governance, was launched by the Provincial Government. The paper focuses on the Etorkizuna Eraikiz initiative, a sound commitment from a local government to build jointly with the citizens the future of the territory. This paper will present preliminary results obtained from three different experiences of co-creation developed within Etorkizuna Eraikiz in which the formulation of networked governance is a mandatory pre-requisite. These experiences show how the network building approach among the different agents of the territory as well as the co-creation of public policies is the cornerstone of this challenging mission. Through the analysis of the information and documentation gathered during the four years of Etorkizuna-Eraikiz, and, specifically by delving into the strategy promoted by the initiative, some emerging analytical conclusions resulting from the promotion of this collaborative culture will be presented. For example, some preliminary results have shown a significant positive relationship between shared leadership and the formulation of the public good. In the period 2016-2018, a total of 73 projects were launched and funding by the Provincial Government of Gipuzkoa within the Etorkizuna Eraikiz initiative, that indicates greater engagement of the citizenry in the process of policy-making and therefore improving, somehow, the quality of the public policies. These statements have been supported by the last survey about the perspectives of the citizens toward politics and policies. Some of the more prominent results show us that there is still a high level of distrust in Politics (78,9% of respondents) but a greater trust in institutions such the Political Government of Gipuzkoa (40,8% of respondents declared as “good” the performance of this provincial institution). Regarding the Etorkizuna Eraikiz Initiative, it is being more readily recognized by citizens over this period of time (25,4% of the respondents in June 2018 agreed to know about the initiative giving it a mark of 5,89 ) and thus build trust and a sense of ownership. Although, there is a clear requirement for further research on the linkages between collaborative governance and level of trust, the paper, based on these findings, will provide some managerial and theoretical implications for collaborative governance in the territory.Keywords: network governance, collaborative governance, public sector innovation, citizen participation, trust
Procedia PDF Downloads 122393 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 77392 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 70391 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 84390 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 22389 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 78388 Multicenter Evaluation of the ACCESS HBsAg and ACCESS HBsAg Confirmatory Assays on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis B Surface Antigen
Authors: Vanessa Roulet, Marc Turini, Juliane Hey, Stéphanie Bord-Romeu, Emilie Bonzom, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Vanessa Viotti, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin
Abstract:
Background: Beckman Coulter, Inc. has recently developed fully automated assays for the detection of HBsAg on a new immunoassay platform. The objective of this European multicenter study was to evaluate the performance of the ACCESS HBsAg and ACCESS HBsAg Confirmatory assays† on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer. Methods: The clinical specificity of the ACCESS HBsAg and HBsAg Confirmatory assays was determined using HBsAg-negative samples from blood donors and hospitalized patients. The clinical sensitivity was determined using presumed HBsAg-positive samples. Sample HBsAg status was determined using a CE-marked HBsAg assay (Abbott ARCHITECT HBsAg Qualitative II, Roche Elecsys HBsAg II, or Abbott PRISM HBsAg assay) and a CE-marked HBsAg confirmatory assay (Abbott ARCHITECT HBsAg Qualitative II Confirmatory or Abbott PRISM HBsAg Confirmatory assay) according to manufacturer package inserts and pre-determined testing algorithms. False initial reactive rate was determined on fresh hospitalized patient samples. The sensitivity for the early detection of HBV infection was assessed internally on thirty (30) seroconversion panels. Results: Clinical specificity was 99.95% (95% CI, 99.86 – 99.99%) on 6047 blood donors and 99.71% (95%CI, 99.15 – 99.94%) on 1023 hospitalized patient samples. A total of six (6) samples were found false positive with the ACCESS HBsAg assay. None were confirmed for the presence of HBsAg with the ACCESS HBsAg Confirmatory assay. Clinical sensitivity on 455 HBsAg-positive samples was 100.00% (95% CI, 99.19 – 100.00%) for the ACCESS HBsAg assay alone and for the ACCESS HBsAg Confirmatory assay. The false initial reactive rate on 821 fresh hospitalized patient samples was 0.24% (95% CI, 0.03 – 0.87%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS HBsAg assay had equivalent sensitivity performances compared to the Abbott ARCHITECT HBsAg Qualitative II assay with an average bleed difference since first reactive bleed of 0.13. All bleeds found reactive in ACCESS HBsAg assay were confirmed in ACCESS HBsAg Confirmatory assay. Conclusion: The newly developed ACCESS HBsAg and ACCESS HBsAg Confirmatory assays from Beckman Coulter have demonstrated high clinical sensitivity and specificity, equivalent to currently marketed HBsAg assays, as well as a low false initial reactive rate. †Pending achievement of CE compliance; not yet available for in vitro diagnostic use. 2023-11317 Beckman Coulter and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.Keywords: dxi 9000 access immunoassay analyzer, hbsag, hbv, hepatitis b surface antigen, hepatitis b virus, immunoassay
Procedia PDF Downloads 88