Search results for: smart tools
3375 Signaling Theory: An Investigation on the Informativeness of Dividends and Earnings Announcements
Authors: Faustina Masocha, Vusani Moyo
Abstract:
For decades, dividend announcements have been presumed to contain important signals about the future prospects of companies. Similarly, the same has been presumed about management earnings announcements. Despite both dividend and earnings announcements being considered informative, a number of researchers questioned their credibility and found both to contain short-term signals. Pertaining to dividend announcements, some authors argued that although they might contain important information that can result in changes in share prices, which consequently results in the accumulation of abnormal returns, their degree of informativeness is less compared to other signaling tools such as earnings announcements. Yet, this claim in favor has been refuted by other researchers who found the effect of earnings to be transitory and of little value to shareholders as indicated by the little abnormal returns earned during the period surrounding earnings announcements. Considering the above, it is apparent that both dividends and earnings have been hypothesized to have a signaling impact. This prompts one to question which between these two signaling tools is more informative. To answer this question, two follow-up questions were asked. The first question sought to determine the event which results in the most effect on share prices, while the second question focused on the event that influenced trading volume the most. To answer the first question and evaluate the effect that each of these events had on share prices, an event study methodology was employed on a sample made up of the top 10 JSE-listed companies for data collected from 2012 to 2019 to determine if shareholders gained abnormal returns (ARs) during announcement dates. The event that resulted in the most persistent and highest amount of ARs was considered to be more informative. Looking at the second follow-up question, an investigation was conducted to determine if either dividends or earnings announcements influenced trading patterns, resulting in abnormal trading volumes (ATV) around announcement time. The event that resulted in the most ATV was considered more informative. Using an estimation period of 20 days and an event window of 21 days, and hypothesis testing, it was found that announcements pertaining to the increase of earnings resulted in the most ARs, Cumulative Abnormal Returns (CARs) and had a lasting effect in comparison to dividend announcements whose effect lasted until day +3. This solidifies some empirical arguments that the signaling effect of dividends has become diminishing. It was also found that when reported earnings declined in comparison to the previous period, there was an increase in trading volume, resulting in ATV. Although dividend announcements did result in abnormal returns, they were lesser than those acquired during earnings announcements which refutes a number of theoretical and empirical arguments that found dividends to be more informative than earnings announcements.Keywords: dividend signaling, event study methodology, information content of earnings, signaling theory
Procedia PDF Downloads 1723374 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1123373 Part Variation Simulations: An Industrial Case Study with an Experimental Validation
Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru
Abstract:
Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation
Procedia PDF Downloads 1783372 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project
Authors: Sara Rankohi, Lloyd Waugh
Abstract:
Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.Keywords: image-based technologies, project management, cost, productivity improvement
Procedia PDF Downloads 3613371 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures
Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara
Abstract:
The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.Keywords: IoT, fog computing, task offloading, efficient crow search algorithm
Procedia PDF Downloads 583370 Development of an Energy Independant DC Building Demonstrator for Insulated Island Site
Authors: Olivia Bory Devisme, Denis Genon-Catalot, Frederic Alicalapa, Pierre-Olivier Lucas De Peslouan, Jean-Pierre Chabriat
Abstract:
In the context of climate change, it is essential that island territories gain energy autonomy. Currently mostly dependent on fossil fuels, the island of Reunion lo- cated in the Indian Ocean nevertheless has a high potential for solar energy. As the market for photovoltaic panels has been growing in recent years, the issues of energy losses linked to the multiple conversions from direct current to alternating current are emerging. In order to quantify these advantages and disadvantages by a comparative study, this document present the measurements carried out on a direct current test bench, particularly for lighting, ventilation, air condi- tioning and office equipment for the tertiary sector. All equipment is supplied with DC power from energy produced by photovoltaic panels. A weather sta- tion, environmental indoor sensors, and drivers are also used to control energy. Self-consumption is encouraged in order to manage different priorities between user consumption and energy storage in a lithium iron phosphate battery. The measurements are compared to a conventional electrical architecture (DC-AC- DC) for energy consumption, equipment overheating, cost, and life cycle analysis.Keywords: DC microgrids, solar energy, smart buildings, storage
Procedia PDF Downloads 1623369 Intelligent Recognition Tools for Industrial Automation
Authors: Amin Nazerzadeh, Afsaneh Nouri Houshyar , Azadeh Noori Hoshyar
Abstract:
With the rapid growing of information technology, the industry and manufacturing systems are becoming more automated. Therefore, achieving the highly accurate automatic systems with reliable security is becoming more critical. Biometrics that refers to identifying individual based on physiological or behavioral traits are unique identifiers provide high reliability and security in different industrial systems. As biometric cannot easily be transferred between individuals or copied, it has been receiving extensive attention. Due to the importance of security applications, this paper provides an overview on biometrics and discuss about background, types and applications of biometric as an effective tool for the industrial applications.Keywords: Industial and manufacturing applications, intelligence and security, information technology, recognition; security technology; biometrics
Procedia PDF Downloads 1553368 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 3153367 Fuzzy Neuro Approach for Integrated Water Management System
Authors: Stuti Modi, Aditi Kambli
Abstract:
This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution
Procedia PDF Downloads 1863366 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model
Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini
Abstract:
This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model
Procedia PDF Downloads 3633365 Decision Support System for the Management and Maintenance of Sewer Networks
Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar
Abstract:
This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling
Procedia PDF Downloads 6373364 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future
Authors: Mazharuddin Syed Ahmed
Abstract:
This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.Keywords: building information modelling, circular economy integration, digital twin, predictive analytics
Procedia PDF Downloads 433363 Clinicians' and Nurses' Documentation Practices in Palliative and Hospice Care: A Mixed Methods Study Providing Evidence for Quality Improvement at Mobile Hospice Mbarara, Uganda
Authors: G. Natuhwera, M. Rabwoni, P. Ellis, A. Merriman
Abstract:
Aims: Health workers are likely to document patients’ care inaccurately, especially when using new and revised case tools, and this could negatively impact patient care. This study set out to; (1) assess nurses’ and clinicians’ documentation practices when using a new patients’ continuation case sheet (PCCS) and (2) explore nurses’ and clinicians’ experiences regarding documentation of patients’ information in the new PCCS. The purpose of introducing the PCCS was to improve continuity of care for patients attending clinics at which they were unlikely to see the same clinician or nurse consistently. Methods: This was a mixed methods study. The cross-sectional inquiry retrospectively reviewed 100 case notes of active patients on hospice and palliative care program. Data was collected using a structured questionnaire with constructs formulated from the new PCCS under study. The qualitative element was face-to-face audio-recorded, open-ended interviews with a purposive sample of one palliative care clinician, and four palliative care nurse specialists. Thematic analysis was used. Results: Missing patients’ biogeographic information was prevalent at 5-10%. Spiritual and psychosocial issues were not documented in 42.6%, and vital signs in 49.2%. Poorest documentation practices were observed in past medical history part of the PCCS at 40-63%. Four themes emerged from interviews with clinicians and nurses-; (1) what remains unclear and challenges, (2) comparing the past with the present, (3) experiential thoughts, and (4) transition and adapting to change. Conclusions: The PCCS seems to be a comprehensive and simple tool to be used to document patients’ information at subsequent visits. The comprehensiveness and utility of the PCCS does paper to be limited by the failure to train staff in its use prior to introducing. The authors find the PCCS comprehensive and suitable to capture patients’ information and recommend it can be adopted and used in other palliative and hospice care settings, if suitable introductory training accompanies its introduction. Otherwise, the reliability and validity of patients’ information collected by this PCCS can be significantly reduced if some sections therein are unclear to the clinicians/nurses. The study identified clinicians- and nurses-related pitfalls in documentation of patients’ care. Clinicians and nurses need to prioritize accurate and complete documentation of patient care in the PCCS for quality care provision. This study should be extended to other sites using similar tools to ensure representative and generalizable findings.Keywords: documentation, information case sheet, palliative care, quality improvement
Procedia PDF Downloads 1513362 Utilizing Extended Reality in Disaster Risk Reduction Education: A Scoping Review
Authors: Stefano Scippo, Damiana Luzzi, Stefano Cuomo, Maria Ranieri
Abstract:
Background: In response to the rise in natural disasters linked to climate change, numerous studies on Disaster Risk Reduction Education (DRRE) have emerged since the '90s, mainly using a didactic transmission-based approach. Effective DRRE should align with an interactive, experiential, and participatory educational model, which can be costly and risky. A potential solution is using simulations facilitated by eXtended Reality (XR). Research Question: This study aims to conduct a scoping review to explore educational methodologies that use XR to enhance knowledge among teachers, students, and citizens about environmental risks, natural disasters (including climate-related ones), and their management. Method: A search string of 66 keywords was formulated, spanning three domains: 1) education and target audience, 2) environment and natural hazards, and 3) technologies. On June 21st, 2023, the search string was used across five databases: EBSCOhost, IEEE Xplore, PubMed, Scopus, and Web of Science. After deduplication and removing papers without abstracts, 2,152 abstracts (published between 2013 and 2023) were analyzed and 2,062 papers were excluded, followed by the exclusion of 56 papers after full-text scrutiny. Excluded studies focused on unrelated technologies, non-environmental risks, and lacked educational outcomes or accessible texts. Main Results: The 34 reviewed papers were analyzed for context, risk type, research methodology, learning objectives, XR technology use, outcomes, and educational affordances of XR. Notably, since 2016, there has been a rise in scientific publications, focusing mainly on seismic events (12 studies) and floods (9), with a significant contribution from Asia (18 publications), particularly Japan (7 studies). Methodologically, the studies were categorized into empirical (26) and non-empirical (8). Empirical studies involved user or expert validation of XR tools, while non-empirical studies included systematic reviews and theoretical proposals without experimental validation. Empirical studies were further classified into quantitative, qualitative, or mixed-method approaches. Six qualitative studies involved small groups of users or experts, while 20 quantitative or mixed-method studies used seven different research designs, with most (17) employing a quasi-experimental, one-group post-test design, focusing on XR technology usability over educational effectiveness. Non-experimental studies had methodological limitations, making their results hypothetical and in need of further empirical validation. Educationally, the learning objectives centered on knowledge and skills for surviving natural disaster emergencies. All studies recommended XR technologies for simulations or serious games but did not develop comprehensive educational frameworks around these tools. XR-based tools showed potential superiority over traditional methods in teaching risk and emergency management skills. However, conclusions were more valid in studies with experimental designs; otherwise, they remained hypothetical without empirical evidence. The educational affordances of XR, mainly user engagement, were confirmed by the studies. Authors’ Conclusions: The analyzed literature lacks specific educational frameworks for XR in DRRE, focusing mainly on survival knowledge and skills. There is a need to expand educational approaches to include uncertainty education, developing competencies that encompass knowledge, skills, and attitudes like risk perception.Keywords: disaster risk reduction education, educational technologies, scoping review, XR technologies
Procedia PDF Downloads 243361 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines
Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna
Abstract:
Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.Keywords: nanoparticles, vincristine, drug delivery, PNIPAM
Procedia PDF Downloads 1563360 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 2783359 Software Cloning and Agile Environment
Authors: Ravi Kumar, Dhrubajit Barman, Nomi Baruah
Abstract:
Software Cloning has grown an active area in software engineering research community yielding numerous techniques, various tools and other methods for clone detection and removal. The copying, modifying a block of code is identified as cloning as it is the most basic means of software reuse. Agile Software Development is an approach which is currently being used in various software projects, so that it helps to respond the unpredictability of building software through incremental, iterative, work cadences. Software Cloning has been introduced to Agile Environment and many Agile Software Development approaches are using the concept of Software Cloning. This paper discusses the various Agile Software Development approaches. It also discusses the degree to which the Software Cloning concept is being introduced in the Agile Software Development approaches.Keywords: agile environment, refactoring, reuse, software cloning
Procedia PDF Downloads 5303358 On the Resilience of Operational Technology Devices in Penetration Tests
Authors: Marko Schuba, Florian Kessels, Niklas Reitz
Abstract:
Operational technology (OT) controls physical processes in critical infrastructures and economically important industries. With the convergence of OT with classical information technology (IT), rising cybercrime worldwide and the increasingly difficult geopolitical situation, the risks of OT infrastructures being attacked are growing. Classical penetration testing, in which testers take on the role of an attacker, has so far found little acceptance in the OT sector - the risk that a penetration test could do more harm than good seems too great. This paper examines the resilience of various OT systems using typical penetration test tools. It is shown that such a test certainly involves risks, but is also feasible in OT if a cautious approach is taken. Therefore, OT penetration testing should be considered as a tool to improve the cyber security of critical infrastructures.Keywords: penetration testing, OT, ICS, OT security
Procedia PDF Downloads 163357 The Internet of Healthcare Things: A European Perspective and a Review of Ethical Concerns
Authors: M. Emmanouilidou
Abstract:
The Internet of Things (IoT) is a disruptive technological paradigm that is at the center of the digital evolution by integrating physical and virtual worlds leading to the creation of extended interconnected ecosystems that are characterized as smart environments. The concept of the IoT has a broad range of applications in different industries including the healthcare sector. The Internet of Healthcare Things (IoHT), a branch of the IoT, is expected to bring promising benefits to all involved stakeholders and accelerate the revolution of the healthcare sector through a transition towards preventive and personalized medicine. The socio-economic challenges that the healthcare sector is facing further emphasize the need for a radical transformation of healthcare systems in both developed and developing countries with the role of pervasive technological innovations, such as IoHT, recognized as key to counteract the relevant challenges. Besides the number of potential opportunities that IoHT presents, there are fundamental ethical concerns that need to be considered and addressed in relation to the application of IoHT. This paper contributes to the discussion of the emerging topic of IoHT by providing an overview of the role and potential of IoHT, highlighting the characteristics of the current and future healthcare landscape, reporting on the up-to-date status of IoHT in Europe and reflecting upon existing research in the ethics of IoHT by incorporating additional ethical dimensions that have been ignored which can provide pathways for future research in the field.Keywords: ethics, Europe, healthcare, Internet of Things
Procedia PDF Downloads 1343356 Information Theoretic Approach for Beamforming in Wireless Communications
Authors: Syed Khurram Mahmud, Athar Naveed, Shoaib Arif
Abstract:
Beamforming is a signal processing technique extensively utilized in wireless communications and radars for desired signal intensification and interference signal minimization through spatial selectivity. In this paper, we present a method for calculation of optimal weight vectors for smart antenna array, to achieve a directive pattern during transmission and selective reception in interference prone environment. In proposed scheme, Mutual Information (MI) extrema are evaluated through an energy constrained objective function, which is based on a-priori information of interference source and desired array factor. Signal to Interference plus Noise Ratio (SINR) performance is evaluated for both transmission and reception. In our scheme, MI is presented as an index to identify trade-off between information gain, SINR, illumination time and spatial selectivity in an energy constrained optimization problem. The employed method yields lesser computational complexity, which is presented through comparative analysis with conventional methods in vogue. MI based beamforming offers enhancement of signal integrity in degraded environment while reducing computational intricacy and correlating key performance indicators.Keywords: beamforming, interference, mutual information, wireless communications
Procedia PDF Downloads 2803355 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology
Authors: Christo Nicholls
Abstract:
The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.Keywords: AI, AMI, demand response, multi-agent
Procedia PDF Downloads 1123354 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East
Authors: Shurouq Munzer
Abstract:
This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation
Procedia PDF Downloads 743353 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load
Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova
Abstract:
The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution
Procedia PDF Downloads 3013352 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools
Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad
Abstract:
Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.Keywords: EDM, cyrogenic, TWR, MRR
Procedia PDF Downloads 4563351 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 943350 A Review on Applications of Experts Systems in Medical Sciences
Authors: D. K. Sreekantha, T. M. Girish, R. H. Fattepur
Abstract:
In this article, we have given an overview of medical expert systems, which can be used for the developed of physicians in making decisions such as appropriate, prognostic, and therapeutic decisions which help to organize, store, and gives appropriate medical knowledge needed by physicians and practitioners during medical operations or further treatment. If they support the studies by using these systems, advanced tools in medicine will be developed in the future. New trends in the methodology of development of medical expert systems have also been discussed in this paper. So Authors would like to develop an innovative IT based solution to help doctors in rural areas to gain expertise in Medical Science for treating patients. This paper aims to survey the Soft Computing techniques in treating patient’s problems used throughout the world.Keywords: expert system, fuzzy logic, knowledge base, soft computing, epilepsy
Procedia PDF Downloads 2543349 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System
Authors: Nelson K. Lujara
Abstract:
The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.Keywords: photovoltaic, water pumping, losses, induction motor
Procedia PDF Downloads 3023348 Thermal Runaway Vehicle Level Investigation and Protection
Authors: Gizem Batman, Mehmet Bora Küçükalpelli, Cenk Di̇nç
Abstract:
Nowadays, electric trucks are anticipated to become much more prevalent in the foreseeable future. However, the necessity to investigate the occurrence of thermal runaway phenomenon in the batteries has arisen, and the safety concerns are supported by past events. This article addresses the phenomenon of battery thermal runaway and examines the implications at the vehicle level. Different battery thermal runaway scenarios are evaluated by giving priority to the components that affect customer safety and customer degree evaluation with CAE tools, regulations, related tests. This evaluation aims to support the efforts of the trucking industry to attain safer, greener, more sustainable, and more effective energy storage solutions.Keywords: thermal runaway, EV truck, heat protection, battery
Procedia PDF Downloads 173347 Implementing a Database from a Requirement Specification
Abstract:
Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention.Keywords: information extraction, natural language processing, relation extraction
Procedia PDF Downloads 2613346 Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria
Authors: Ahmadu Girgiri, Lawan Gana Ali, Mamman M. Baba
Abstract:
Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.Keywords: application, environment, insecurity, sensor, wireless sensor network
Procedia PDF Downloads 263