Search results for: minimum data set
24698 Software Quality Assurance in Component Based Software Development – a Survey Analysis
Authors: Abeer Toheed Quadri, Maria Abubakar, Mehreen Sirshar
Abstract:
Component Based Software Development (CBSD) is a new trend in software development. Selection of quality components is not enough to ensure software quality in Component Based Software System (CBSS). A software product is considered to be a quality product if it satisfies its customer’s needs and has minimum defects. Authors’ survey different research papers and analyzes various techniques which ensure software quality in component based software development. This paper includes an investigation about how to improve the quality of a component based software system without effecting quality attributes. The reported information is identified from literature survey. The developments of component based systems are rising as they reduce the development time, effort and cost by means of reuse. After analysis, it has been explored that in order to achieve the quality in a CBSS we need to have the components that are certified through software measure because the predictability of software quality attributes of system depend on the quality attributes of the constituent components, integration process and the framework used.Keywords: CBSD (component based software development), CBSS (component based software system), quality components, SQA (software quality assurance)
Procedia PDF Downloads 41424697 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42324696 Contention Window Adjustment in IEEE 802.11-based Industrial Wireless Networks
Authors: Mohsen Maadani, Seyed Ahmad Motamedi
Abstract:
The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. An adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.Keywords: average delay, contention window, distributed coordination function (DCF), jitter, industrial wireless network (IWN), maximum delay, reliability, retry limit
Procedia PDF Downloads 41624695 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 9924694 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income
Authors: M. Koray Cetin, Mehmet Mert
Abstract:
The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.Keywords: exchange rate, panel data analysis, security, tourism revenues
Procedia PDF Downloads 35124693 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell
Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini
Abstract:
This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.Keywords: nano particle, composite film, eggshell, bacteria
Procedia PDF Downloads 39424692 Effects of Upstream Wall Roughness on Separated Turbulent Flow over a Forward Facing Step in an Open Channel
Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie
Abstract:
The effect of upstream surface roughness over a smooth forward facing step in an open channel was investigated using a particle image velocimetry technique. Three different upstream surface topographies consisting of hydraulically smooth wall, sandpaper 36 grit and sand grains were examined. Besides the wall roughness conditions, all other upstream flow characteristics were kept constant. It was also observed that upstream roughness decreased the approach velocity by 2% and 10% but increased the turbulence intensity by 14% and 35% at the wall-normal distance corresponding to the top plane of the step compared to smooth upstream. The results showed that roughness decreased the reattachment lengths by 14% and 30% compared to smooth upstream. Although the magnitudes of maximum positive and negative Reynolds shear stress in separated and reattached region were 0.02Ue for all the cases, the physical size of both the maximum and minimum contour levels were decreased by increasing upstream roughness.Keywords: forward facing step, open channel, separated and reattached turbulent flows, wall roughness
Procedia PDF Downloads 35524691 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia
Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure
Abstract:
Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.Keywords: adaptation, cultural landscape, drought, extremes indices
Procedia PDF Downloads 2624690 A Supply Chain Traceability Improvement Using RFID
Authors: Yaser Miaji, Mohammad Sabbagh
Abstract:
Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.Keywords: supply chain, RFID, tractability, radio frequency identification
Procedia PDF Downloads 48824689 The Effect of General Data Protection Regulation on South Asian Data Protection Laws
Authors: Sumedha Ganjoo, Santosh Goswami
Abstract:
The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.Keywords: data privacy, GDPR, Asia, data protection laws
Procedia PDF Downloads 8224688 In-Vitro Stability of Aspergillus terreus Phytases in Relation to Different Physico-Chemical Factors
Authors: Qaiser Akram, Ahsan Naeem, Hafiz Muhammad Rizwan, Waqas Ahmad, Rubeena Yasmeen
Abstract:
Aspergillus has good secretory potential for phytases. Morphologically and microscopically identified Aspergillus terreus (A. terreus) (n=20) were screened for phytase production and non-toxicity. Phytases produced by non-toxigenic A. terreus under optimum conditions were quantified. Phytases of highest producer A. terreus were evaluated for stability after exposure to temperature (35, 55, 75 and 95ºC) and pH (2, 4, 6 and 8). Effect of metal ions (Fe⁺³, Ba⁺², Ca⁺², Cu⁺², Mg⁺², Mn⁺², K⁺¹ and Na⁺¹) was assessed on phytase activity. Log reduction in phytase activity was calculated. The highest activity units of phytase produced by A. terreus were 271.49 ± 8.14 phytase unit / mL (FTU/ mL). The lowest reduction in phytase activity was 50.20 ± 7.36 (18.5%) and 68.22 ± 10.3 FTU/mL (25.13%) at 35ºC and pH 6, respectively for 15 minutes. The highest reduction 259 ± 0.84 (95.5%) and 211.99 ± 4.39 FTU/mL (78.1%) was recorded at 95ºC for 60 minutes and pH 2.0 for 45 minutes exposure, respectively. All metal ions negatively affected phytase activity. Phytase activity was inhibited minimum (45.32 ± 28.54 FTU/mL, 16.69%) by K⁺¹(1 mM) and maximum (231.48 ± 3.68 FTU/mL, 80.8%) by Cu⁺² (10 mM). It was concluded that A. terreus phytase stability and activity was dependent on physio-chemical factors.Keywords: stability, phytase, aspergillus terreus, physio-chemical factors and metal ions
Procedia PDF Downloads 28824687 Genetic Diversity Analysis in Triticum Aestivum Using Microsatellite Markers
Authors: Prachi Sharma, Mukesh Kumar Rana
Abstract:
In the present study, the simple sequence repeat(SSR) markers have been used in analysis of genetic diversity of 37 genotypes of Triticum aestivum. The DNA was extracted using cTAB method. The DNA was quantified using the fluorimeter. The annealing temperatures for 27 primer pairs were standardized using gradient PCR, out of which 16 primers gave satisfactory amplification at temperature ranging from 50-62⁰ C. Out of 16 polymorphic SSR markers only 10 SSR primer pairs were used in the study generating 34 reproducible amplicons among 37 genotypes out of which 30 were polymorphic. Primer pairs Xgwm533, Xgwm 160, Xgwm 408, Xgwm 120, Xgwm 186, Xgwm 261 produced maximum percent of polymorphic bands (100%). The bands ranged on an average of 3.4 bands per primer. The genetic relationship was determined using Jaccard pair wise similarity co-efficient and UPGMA cluster analysis with NTSYS Pc.2 software. The values of similarity index range from 0-1. The similarity coefficient ranged from 0.13 to 0.97. A minimum genetic similarity (0.13) was observed between VL 804 and HPW 288, meaning they are only 13% similar. More number of available SSR markers can be useful for supporting the genetic diversity analysis in the above wheat genotypes.Keywords: wheat, genetic diversity, microsatellite, polymorphism
Procedia PDF Downloads 61424686 Evaluation of Bollworm Tolerance in F1 and F2 BT Cotton under Unprotected Condition
Authors: N. K. Bhute, B. B. Bhosle
Abstract:
Field experiment was conducted during kharif 2005, at the experimental farm of the Department of Genetics and Plant Breeding, College of Agriculture, Marathwada Agricultural University, Parbhani, Maharashtra. F1 and F2 hybrids of 23 Bt and 5 non-Bt hybrids were grown in a randomized block design with two replications. The results showed that among F1 hybrids, open boll damage due to bollworm complex was not noticed in 4233 Bt and 4247 Bt cotton hybrids which were found significantly superior over MECH 6301 Bt (3.2 %), 4255 Bt (3.28 %) and it was at par with rest of the hybrids. Among F2 hybrids minimum open boll damage (3.10 %) was noticed in Proagro 144 Bt, which was found significantly superior over rest of the hybrids except 4234 Bt (4.17 %) and 4254 Bt (4.98 %) which were at par with each other. In respect of seed cotton yield, among F1 hybrids maximum yield (15.51 q/ha) was recorded in 4233 Bt which was found significantly superior over rest of the hybrids except 4237 Bt (15.24 q/ha). Among F2 maximum yield (15.44 q/ha) was recorded in 4233 Bt which was found significantly superior over rest of the hybrids except 4258 Bt (15.41 q/ha), 4239 Bt (15.098 q/ha) which were at par with each other. Thus F2 Bt cotton express Bt protein in segregated pattern in which bollworm attack was more as compared to F1 which affects yield as well as quality of lint.Keywords: Bt cotton, bollworms, F1 and F2 generations, unprotected condition
Procedia PDF Downloads 29924685 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 16924684 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 6224683 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 21224682 Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India
Authors: G. N. Tiwari, Shyam
Abstract:
Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively.Keywords: exergy, greenhouse, photovoltaic thermal, solar dryer
Procedia PDF Downloads 40824681 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level
Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil
Abstract:
This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing
Procedia PDF Downloads 37324680 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 7624679 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 31624678 An Improved Approach Based on MAS Architecture and Heuristic Algorithm for Systematic Maintenance
Authors: Abdelhadi Adel, Kadri Ouahab
Abstract:
This paper proposes an improved approach based on MAS Architecture and Heuristic Algorithm for systematic maintenance to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling
Procedia PDF Downloads 30124677 A Multicriteria Model for Sustainable Management in Agriculture
Authors: Basil Manos, Thomas Bournaris, Christina Moulogianni
Abstract:
The European agricultural policy supports all member states to apply agricultural development plans for the development of their agricultural sectors. A specific measure of the agricultural development plans refers to young people in order to enter into the agricultural sector. This measure helps the participating young farmers in achieving maximum efficiency, using methods and environmentally friendly practices, by altering their farm plans. This study applies a Multicriteria Mathematical Programming (MCDA) model for the young farmers to find farm plans that achieve the maximum gross margin and the minimum environmental impacts (less use of fertilizers and irrigation water). The analysis was made in the region of Central Macedonia, Greece, among young farmers who have participated in the “Setting up Young Farmers” measure during 2007-2010. The analysis includes the implementation of the MCDA model for the farm plans optimization and the comparison of selected environmental indicators with those of the existent situation.Keywords: multicriteria, optimum farm plans, environmental impacts, sustainable management
Procedia PDF Downloads 34024676 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10824675 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 37424674 Advanced Digital Manufacturing: Case Study
Authors: Abdelrahman Abdelazim
Abstract:
Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing
Procedia PDF Downloads 77124673 Trash Dash: An Educational Android Game Application for Proper Waste Segregation
Authors: Marylene S. Eder, Dorothy M. Jao, Paolo Marc Nicolas S. Laspiñas, Pukilan A. Malim, Sarah Jean D. Raterta
Abstract:
Trash Dash is an android game application developed to serve as an alternative tool to practice proper waste segregation for children ages 3 years old and above. The researchers designed the application using Unity 3D and developed the text file that served as the database of the game application. An observation of a pre-school teacher shows that children know how to throw their garbage but they do not know yet how to segregate wastes. After launching the mobile application to K-2 pupils 4 – 5 years of age, the researchers have noticed that children within this age are active and motivated to learn the difference between biodegradable and non-biodegradable. Based on the result of usability test conducted, it was concluded that the game is easy to use and children will most likely use this application frequently. Furthermore, the children may need assistance from their parents and teachers when playing the game. An actual testing of the application has been conducted to different devices as well as functionality test by Thwack Application and it can be concluded that the mobile application can be launched and installed on a device with a minimum API requirement of Gingerbread (2.3.1).Keywords: waste segregation, android application, biodegradable, non-biodegradable
Procedia PDF Downloads 44524672 Identifying the Challenges and Opportunities of Using Lesson Study in English Language Teaching Through the Lenses of In-Service Ecuadorian EFL Teachers
Authors: Cherres Sara, Cajas Diego
Abstract:
This paper explores how EFL teachers understand the process of Lesson Study in Ecuadorian schools and the challenges and opportunities that it brings to the improvement of their teaching practice. Using a narrative research methodology, this study presents the results of the application of the four steps of Lesson Study carried out by seven teachers in four different schools located in the Southern part of Ecuador during four months. Before starting the implementation of the lesson study, 30 teachers were trained on this model. This training was opened to EFL teachers working in public and private schools without any charge. The criteria to select these teachers were first, to be minimum a one-year in-service teacher, second, to have a b2 level of English, and third, to be able to commit to follow the course guidelines. After the course, seven teachers decided to continue with the implementation of the Lesson Study in their respective institutions. During the implementation of the Lesson Study, data was collected through observations, in-depth interviews and teachers’ planning meetings; and analyzed using a thematic analysis. The results of this study are presented using the lenses of seven EFL teachers that explained the challenges and opportunities that the implementation of Lesson Study conveyed. The challenges identified were the limited capacity of reflection and recognition of the activities that required improvement after the class, limited capacity to provide truthful peer feedback, teachers wrong notions about their performance in their classes, difficulties to follow a collaborative lesson plan; and, the disconnection between class activities and the class content. The opportunities identified were teachers’ predisposition to collaborate, teachers’ disposition to attend professional development courses, their commitment to work extra hours in planning meetings, their openness and their desired to be observed in their classes; and, their willingness to share class materials and knowledge. On the other hand, the results show that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations. The authors concluded that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations for example: excessive institutional paperwork and activities that are not connected to the development of students’ competences.Keywords: ELT, lesson study, teachers’ professional development, teachers’ collaboration
Procedia PDF Downloads 6824671 Occupational Challenges and Adjustment Strategies of Internally Displaced Persons in Abuja, Nigeria
Authors: David Obafemi Adebayo
Abstract:
An occupational challenge has been identified as one of the factors that could cripple set goals and life ambitions of an Internally Displaced Person (IDP). The main thrust of this study is therefore, explore the use of life support/adjustment strategy with a view to repositioning these internally displaced persons in Nigeria in revamping their goals and achieving their life-long ambitions. The study intends to investigate whether there exist, on the basis of gender, religion, years of working experience and educational qualification any significant difference in the occupational challenges and adjustment strategies of IDPs. The study being descriptive of survey type adopted a multi-stage sampling technique to select the minimum of 400 internally displaced persons from IDP camps in Yimitu Village, Waru District in the Federal Capital Territory (FCT), Abuja. The research instrument used for the study was a researcher-designed questionnaire entitled “Questionnaire on Occupational Challenges and Adjustment Strategy of Internally Displaced Persons (QOCASIDPs)”. Eight null hypotheses were tested at 0.05 alpha levels of significance. Frequency counts and percentages, means and rank order, t-test, Analysis of Variance (ANOVA) and Duncan Multiple Range Test (DMRT) (where applicable) were employed to analyze the data. The Study determined whether occupational challenges of internally displaced persons included loss of employment, vocational discrimination, marginalization by employers of labour, isolation due to joblessness, lack of occupational freedom, which were found to be true. The results were discussed in line with the findings. The study established the place of notable adjustment strategies adopted by internally displaced person like engaging in petty trading, sourcing soft loans from NGOs, setting up small-scale businesses in groups, acquiring new skills, engaging in further education, among others. The study established that there was no significant difference in the occupational challenges of IDPs on the basis of years of working experience and highest educational qualifications, though there was significant difference on the basis of gender as well as religion. Based on the findings of the study, recommendations were made.Keywords: internally displaced persons, occupational challenges, adjustment strategies, Abuja-Nigeria
Procedia PDF Downloads 35824670 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 34024669 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 164