Search results for: data reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28933

Search results for: data reduction

27103 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.

Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression

Procedia PDF Downloads 141
27102 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction

Authors: S. Anastasiou, C. Nathanailides

Abstract:

The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.

Keywords: job satisfaction, job performance, customer’ service, banks, human resources management

Procedia PDF Downloads 325
27101 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 62
27100 The Applications of Group Counseling on Self-Concept, Depression, and Resilience of Teenage Pregnancy

Authors: Fauziah Mohd Sa’ad, Mohammad Aziz Shah, B. Mohammad Arip, Norazani Ahmad, Mohd Noor Idris, Hapsah M. Yusof

Abstract:

This study was carried out to assess the application of person-centred therapy and Cognitive Psychology Ad-Din group counseling on self-concept, depression, and resilience of teenage pregnancy. This study involved 55 teenage pregnancy at three women’s refuge centers which are from KEWAJA, Rhaidatus Sakinah, and Taman Seri Puteri Cheras (JKM). Subjects were classed into two treatment groups and one control group. The Multidimensional Self-Concept Scale (MSCS), Beck Depression inventory (BDI) and Adolescent Resiliency Attitude Scale (ARAS) was administered to assess self-concept, depression, and resilience of teenage pregnancy. The control pre and post test design was used for this study. The research data were analyzed using descriptive analysis, ANOVA, MANCOVA and Tuckey Post Hoc with the significant level of .01 and .05. All treatment group received group counseling sessions for 7 consecutive week, once in each week. The Person-centred group and Cognitive Psychology Ad-Din group counseling showed a significant reduction (pre-test to post-test) on depression, enhancing self-concept and resilience of teenage pregnancy.

Keywords: group counseling, person-centred therapy, cognitive psychology Ad-Din, teenage pregnancy

Procedia PDF Downloads 576
27099 Evaluation of Australian Open Banking Regulation: Balancing Customer Data Privacy and Innovation

Authors: Suman Podder

Abstract:

As Australian ‘Open Banking’ allows customers to share their financial data with accredited Third-Party Providers (‘TPPs’), it is necessary to evaluate whether the regulators have achieved the balance between protecting customer data privacy and promoting data-related innovation. Recognising the need to increase customers’ influence on their own data, and the benefits of data-related innovation, the Australian Government introduced ‘Consumer Data Right’ (‘CDR’) to the banking sector through Open Banking regulation. Under Open Banking, TPPs can access customers’ banking data that allows the TPPs to tailor their products and services to meet customer needs at a more competitive price. This facilitated access and use of customer data will promote innovation by providing opportunities for new products and business models to emerge and grow. However, the success of Open Banking depends on the willingness of the customers to share their data, so the regulators have augmented the protection of data by introducing new privacy safeguards to instill confidence and trust in the system. The dilemma in policymaking is that, on the one hand, lenient data privacy laws will help the flow of information, but at the risk of individuals’ loss of privacy, on the other hand, stringent laws that adequately protect privacy may dissuade innovation. Using theoretical and doctrinal methods, this paper examines whether the privacy safeguards under Open Banking will add to the compliance burden of the participating financial institutions, resulting in the undesirable effect of stifling other policy objectives such as innovation. The contribution of this research is three-fold. In the emerging field of customer data sharing, this research is one of the few academic studies on the objectives and impact of Open Banking in the Australian context. Additionally, Open Banking is still in the early stages of implementation, so this research traces the evolution of Open Banking through policy debates regarding the desirability of customer data-sharing. Finally, the research focuses not only on the customers’ data privacy and juxtaposes it with another important objective of promoting innovation, but it also highlights the critical issues facing the data-sharing regime. This paper argues that while it is challenging to develop a regulatory framework for protecting data privacy without impeding innovation and jeopardising yet unknown opportunities, data privacy and innovation promote different aspects of customer welfare. This paper concludes that if a regulation is appropriately designed and implemented, the benefits of data-sharing will outweigh the cost of compliance with the CDR.

Keywords: consumer data right, innovation, open banking, privacy safeguards

Procedia PDF Downloads 143
27098 Aframomum melegueta Improves Antioxidant Status of Type 2 Diabetes Rats Model

Authors: Aminu Mohammed, Shahidul Islam

Abstract:

Aframomum melegueta K.Schum commonly known as Grains of Paradise has been a popularly used spice in most of the African food preparation. Available data have shown that ethyl acetate fraction from crude ethanolic extract exhibited α-amylase and α-glucosidase inhibitory actions, improved pancreatic β-cell damage and ameliorated insulin resistance in diabetic rats. Additionally, 6-gingerol, 6-shogaol, 6-paradol and oleanolic acid are shown to be the compounds responsible for the antidiabetic action of A. melegueta. However, detail antioxidant potential of this spice in a diabetic animal model has not yet been reported. Thus, the present study investigates the effect of oral consumption of A. melegueta fruit on the in vivo antioxidant status of type 2 diabetes (T2D) model of rats. T2D was induced in rats by feeding a 10% fructose solution ad libitum for two weeks followed by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight (bw)). The animals were orally administered with 150 (DAML) or 300 mg/kg bw (DAMH) of the fraction once daily for four weeks. Data were analyzed by using a statistical software package (SPSS for Windows, version 22, IBM Corporation, NY, USA) using Tukey’s-HSD multiple range post-hoc test. Values were considered significantly different at p < 0.05. According to the data, after four weeks of intervention, diabetic untreated animals showed significantly (p < 0.05) elevation of blood glucose levels. The levels of thiobarbituric acid reactive substances (TBARS) were observed to increase with concomitant reduction of reduced glutathione (GSH) levels in the serum and organs (liver, kidney, heart and pancreas) of diabetic untreated animals. The activities of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reductase) were greatly reduced in the serum and organs of diabetic untreated animals compared to the normal animals. These alterations were reverted to near-normal after the treatment of A. melegueta fruit in the treated groups (DAML & DAMH) within the study period, especially at the dose of 300 mg/kg bw. This potent antioxidant action may partly be attributed to the presence of the 6-Gingerol, 6-shogaol and 6-paradol are known to possess antioxidant action. The results of our study showed that A. melegueta intake improved the antioxidant status of T2D rats and therefore could be used to ameliorate the diabetes-induced oxidative damage.

Keywords: Aframomum melegueta, antioxidant, ethyl acetate extract, type 2 diabetes

Procedia PDF Downloads 304
27097 Assessment of Knowledge and Practices of Diabetic Patients Regarding Diabetic Foot Care, in Makkah, Saudi Arabia

Authors: Reda Goweda, Mokhtar Shatla, Arawa Alzaidi, Arij Alzaidi, Bashair Aldhawani, Hibah Alharbi, Noran Sultan, Daniah Alnemari, Badr Rawa

Abstract:

Background: 20.5% of Saudis between 20 and 79 years are diabetics. Diabetic foot is a chronic complication of diabetes. The incidence of non traumatic lower extremity amputations is at least 15 times greater in those with diabetes than non diabetics. Patient education is important to reduce lower extremity complications. Objective: To assess the knowledge and practices of the diabetic patients regarding foot care and diabetic foot complications. Methods: In Makkah hospitals, 350 diabetic patients who met the inclusion criteria were involved in this cross sectional study. Interviewing questionnaire and patients’ charts review were used to collect the data. Results: Mean age of patients was 53.0083±13.1 years, and mean duration of diabetes was 11.24±8.7 years. 35.1% had history of foot ulcer while 25.7% had ulcer on the time of interview. 11.7 % had history of amputation and 83.1% had numbness. 77.1 % examine their feet while 49.1% received foot care education and 34% read handouts on foot care. 34% walk around in bare feet. There is a significant statistical association between foot education, foot care practices, and diabetic foot ulcer (p-value < 0.022). Conclusion: Patient knowledge and practices regarding diabetic foot care is significantly associated with the reduction of diabetic foot ulcer.

Keywords: knowledge, practice, attitude, diabetes, foot, care

Procedia PDF Downloads 497
27096 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 253
27095 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 342
27094 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 214
27093 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 211
27092 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 132
27091 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 112
27090 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment

Authors: Ibrahim Hakeem

Abstract:

Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.

Keywords: biosolids, pyrolysis, biochar, heavy metals

Procedia PDF Downloads 79
27089 Effect of Perioperative Multimodal Analgesia on Postoperative Opioid Consumption and Complications in Elderly Traumatic Hip Fracture Patients: A Systematic Review of Randomised Controlled Trials

Authors: Raheel Shakoor Siddiqui, Shahbaz Malik, Manikandar Srinivas Cheruvu, Sanjay Narayana Murthy, Livio DiMascio

Abstract:

Background: elderly traumatic hip fracture patients frequently present to trauma services globally. Rising low energy falls amongst an osteoporotic aging population is the commonest cause for injury. Hip fractures in this population are a major cause for severe pain, morbidity and mortality. The term hip fracture is interchangeable with neck of femur fracture, fractured neck of femur or proximal femur fracture. Hip fracture pain management protocols and guidelines suggest conventional analgesia, nerve block and opioid based treatment as rescue analgesia. There is a current global opioid crisis with overuse, abuse and dependence. Adverse opioid related complications in vulnerable elderly patients further adds to morbidity and mortality. Systematic reviews in literature have evidenced superiority of multimodal analgesia in osteoarthritic primary joint replacements compared to opioids however, this has not yet been conducted for elderly traumatic hip fracture patients. Aims: The primary aim of this systematic review is to provide standardised evidence following Cochrane and PRISMA guidance in determining advantages of perioperative multimodal analgesia over conventional opioid based treatments in elderly traumatic hip fractures. Methods: 5 databases were searched from January 2000-2023 which identified 8 randomised controlled trials and 446 total participants. These trials met defined PICOS eligibility criteria of patient mean age ≥ 65 years presenting with a unilateral traumatic fractured neck of femur for operative intervention. Analgesic intervention with perioperative multimodal analgesia has been compared to conventional opioid based analgesia. Outcomes of interest include, primarily, the change in postoperative opioid consumption within a 0-30 postoperative period and secondarily, the change in postoperative adverse events and complications. A qualitative synthesis has been performed due to clinical heterogenicity and variance amongst trials. Results: GRADE evidence of moderate quality supports perioperative multimodal analgesia leads to a reduction in postoperative opioid consumption however, low quality evidence supports a reduction of adverse effects and complications. Conclusion: Perioperative multimodal analgesia whether used preoperative, intraoperative and/or postoperative leads to a reduction in postoperative opioid consumption for elderly traumatic hip fracture patients. This review recommends the use of perioperative multimodal analgesia as part of hip fracture pain protocols however, caution and clinical judgement should be used as the risk of adverse effects may not be lower.

Keywords: trauma, orthopaedics, hip, fracture, neck of femur fracture, analgesia, multimodal analgesia, opioid

Procedia PDF Downloads 98
27088 Exploring the Career Experiences of Internationally Recruited Nurses at the Royal Berkshire NHS Foundation Trust

Authors: Natalie Preville, Carlos Joel Mejia-Olivares

Abstract:

In the UK, since the early 1950s when the NHS was founded, international staff in the NHS have played an important role. Currently, they represent 16% of the workforce within the NHS in the UK. Furthermore, to address the shortfalls in nursing staff, international recruitment programs have been essential to reduce the gaps in the UK nursing workforce over the last two decades. The NHS Long Term Plan (2019) aims to have a significant reduction of nursing vacancies to 5% by 2028. However, in 2021 and 2022, Workforce Race Equality Standards (WRES) reports stated that there is inequitable Career Progression (CP) among Internationally Recruited (IR) nurses as compared to British counterparts. In addition, there is sufficient literature exploring the motives and lived experiences of IR nurses, which underpins the findings. Therefore, the overall aim of this report is to conduct a scoping project to understand the experiences of the IR nurses who joined the NHS in the South East of England within the last 5 years. Methodology- This document is based on the data from a survey developed by Royal Berkshire NHS Foundation Trust using Microsoft forms and consisted of 23 questions divided into four themes, staff background, career experience, career progression and future career plans within Royal Berkshire NHS Foundation Trust. The descriptive analysis provided the initial analysis of the quantitative data. As a result, 44 responses were collected and evaluated by utilising Microsoft excel. Key findings: Career experiences; 72% of respondents felt that their current role was a good fit, and in a subsequent question, the main reason cited was having “relevant skills”. This indicates that, for the most part, the prior experience of IR nurses is a large factor in their placement, which is viewed positively; the next step is to effectively apply similar relevance in aligning prior experience with career progression opportunities. Moreover, 67% of respondents feel valued by the department/team, which is a great reflection of the values of the Trust being demonstrated towards IR Nurses. However, further studies may be necessary to explore the reasons why the remaining 33% may not feel valued; this can include having a better understanding of cultural perceptions of value. Perceived Barriers: Although 37% of respondents had been promoted since commencing employment with the Trust, the data indicates that there is still room for CP opportunities, as it is the leading barrier reported by the respondents. Secondly, the growing mix of cultures within the nursing workforce gives the appearance of inclusion. However, this is not the experience of some IR nurses. Conclusion statemen: Survey results indicate that this NHS Trust has an excellent foundation to integrate international nurses into their workforce with scope for career progression in a reasonable timeframe. However, it would be recommendable to include fast-tracking career promotions by recognizing previous studies and professional experience. Further exploration of staff career experiences and goals may provide additional useful data for future planning.

Keywords: career progression, International nurses, perceived barriers, staff survey

Procedia PDF Downloads 79
27087 Botulinum Toxin type A for Lower Limb Lengthening and Deformity Correction: A Systematic Review and Meta-analysis

Authors: Jawaher F. Alsharef, Abdullah A. Ghaddaf, Mohammed S. Alomari, Abdullah A. Al Qurashi, Ahmed S. Abdulhamid, Mohammed S. Alshehri, Majed Alosaimi

Abstract:

Botulinum toxin type A (BTX-A) is the most popular therapeutic agent for muscle relaxation and pain control. Lately, BTX-A injection received great interest as a part of multimodal pain management for lower limb lengthening and deformity correction. This systematic review aimed to determine the role of BTX-A injection in pain management for during lower limb lengthening and/or deformity correction. We searched Medline, Embase, and CENTRAL. We included randomized controlled trials (RCTs) that compared the BTX-A injection to placebo for individuals undergoing lower limb lengthening and/or deformity correction. We sought to evaluate the following outcomes: pain on visual analogue scale (VAS), range of motion parameters, average opioid consumption, and adverse events. The standardized mean difference (SMD) was used to represent continuous outcomes while risk ratio (RR) was used to represent dichotomous outcomes. A total of 4 RCTs that enrolled 257 participants (337 limbs) deemed eligible. Adjuvant BTX-A injection showed a significant reduction in post-operative pain compared to placebo (SMD=–0.28, 95% CI –0.53 to –0.04). No difference was found between BTX-A injection and placebo in terms of range of motion parameters, average opioid consumption, or adverse events after surgical limb lengthening and/or deformity correction (RR= 0.77, 95% CI –0.58 to 1.03). Conclusions: Adjuvant BTX-A injection conferred a discernible reduction in post-operative pain during surgical limb lengthening and/or deformity without increasing the risk of adverse events.

Keywords: botulinum toxin type A, limb lengthening, distraction osteogenesis, deformity correction, pain management

Procedia PDF Downloads 145
27086 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 146
27085 Effect of Corrosion on the Shear Buckling Strength

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Ii Kim

Abstract:

The ability to resist the shear strength arises mainly from the web panel of steel girders and as such, the shear buckling strength of these girders has been extensively investigated. For example, Blaser’s reported that when buckling occurs, the tension field has an effect after the buckling strength of the steel is reached. The findings of these studies have been applied by AASHTO, AISC, and to the European Code that provides guidelines for designs aimed at preventing shear buckling. Steel girders are susceptible to corrosion resulting from exposure to natural elements such as rainfall, humidity, and temperature. This corrosion leads to a reduction in the size of the web panel section, thereby resulting in a decrease in the shear strength. The decrease in the panel section has a significant effect on the maintenance section of the bridge. However, in most conventional designs, the influence of corrosion is overlooked during the calculation of the shear buckling strength and hence over-design is common. Therefore, in this study, a steel girder with an A/D of 1:1, as well as a 6-mm-, 16-mm-, and 12-mm-thick web panel, flange, and intermediate reinforcing material, respectively, were used. The total length was set to that (3200 mm) of the default model. The effect of corrosion shear buckling was investigated by determining the volume amount of corrosion, shape of the erosion patterns, and the angular change in the tensile field of the shear buckling strength. This study provides the basic data that will enable designs that incorporate values closer (than those used in most conventional designs) to the actual shear buckling strength.

Keywords: corrosion, shear buckling strength, steel girder, shear strength

Procedia PDF Downloads 377
27084 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 348
27083 A Non-parametric Clustering Approach for Multivariate Geostatistical Data

Authors: Francky Fouedjio

Abstract:

Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.

Keywords: clustering, geostatistics, multivariate data, non-parametric

Procedia PDF Downloads 480
27082 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 140
27081 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms

Authors: Nidhin Dani Abraham, T. K. Sri Shilpa

Abstract:

Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.

Keywords: data mining, asset liability management, BASEL III, banking

Procedia PDF Downloads 559
27080 Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data

Authors: Chris Suma, Yingcai Xiao

Abstract:

This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots.

Keywords: human computer interaction, parallel coordinates, spiral surface, visualization

Procedia PDF Downloads 17
27079 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 204
27078 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 341
27077 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 228
27076 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 437
27075 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 500
27074 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 332