Search results for: circular dichroism sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2072

Search results for: circular dichroism sensor

242 Spare Part Carbon Footprint Reduction with Reman Applications

Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş

Abstract:

Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.

Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability

Procedia PDF Downloads 55
241 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 108
240 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 147
239 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: operational performance, roundabout, simulation, VISSIM

Procedia PDF Downloads 118
238 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 164
237 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products

Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto

Abstract:

An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.

Keywords: TDLAS, carbon dioxide, cups, headspace, measurement

Procedia PDF Downloads 292
236 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 164
235 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 272
234 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 141
233 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 105
232 Act Local, Think Global: Superior Institute of Engineering of Porto Campaign for a Sustainable Campus

Authors: R. F. Mesquita Brandão

Abstract:

Act Local, Think Global is the name of a campaign implemented at Superior Institute of Engineering of Porto (ISEP), one of schools of Polytechnic of Porto, with the main objective of increase the sustainability of the campus. ISEP has a campus with 52.000 m2 and more than 7.000 students. The campaign started in 2019 and the results are very clear. In 2019 only 16% of the waste created in the campus was correctly separate for recycling and now almost 50% of waste goes to the correct waste container. Actions to reduce the energy consumption were implemented with significantly results. One of the major problems in the campus are the water leaks. To solve this problem was implemented a methodology for water monitoring during the night, a period of time where consumptions are normally low. If water consumption in the period is higher than a determinate value it may mean a water leak and an alarm is created to the maintenance teams. In terms of energy savings, some measurements were implemented to create savings in energy consumption and in equivalent CO₂ produced. In order to reduce the use of plastics in the campus, was implemented the prohibition of selling 33 cl plastic water bottles and in collaboration with the students association all meals served in the restaurants changed the water plastic bottle for a glass that can be refilled with water in the water dispensers. This measures created a reduction of use of more than 75.000 plastic bottles per year. In parallel was implemented the ISEP water glass bottle to be used in all scientific meetings and events. Has a way of involving all community in sustainability issues was developed and implemented a vertical garden in aquaponic system. In 2019, the first vertical garden without soil was installed inside a large campus building. The system occupies the entire exterior façade (3 floors) of the entrance to ISEP's G building. On each of these floors there is a planter with 42 positions available for plants. Lettuces, strawberries, peppers are examples of some vegetable produced that can be collected by the entire community. Associated to the vertical garden was developed a monitoring system were some parameters of the system are monitored. This project is under development because it will work in a stand-alone energy feeding, with the use of photovoltaic panels for production of energy necessities. All the system was, and still is, developed by students and teachers and is used in class projects of some ISEP courses. These and others measures implemented in the campus, will be more developed in the full paper, as well as all the results obtained, allowed ISEP to be the first Portuguese high school to obtain the certification “Coração Verde” (Green Heart), awarded by LIPOR, a Portuguese company with the mission of transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value.

Keywords: aquaponics, energy efficiency, recycling, sustainability, waste separation

Procedia PDF Downloads 72
231 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 102
230 Insect Manure (Frass) as a Complementary Fertilizer to Enhance Soil Mineralization Function: Application to Cranberry and Field Crops

Authors: Joël Passicousset, David Gilbert, Chloé Chervier-Legourd, Emmanuel Caron-Garant, Didier Labarre

Abstract:

Living soil agriculture tries to reconciliate food production while improving soil health, soil biodiversity, soil fertility and more generally attenuating the inherent environmental drawbacks induced by modern agriculture. Using appropriate organic materials as soil amendments has a role to play in the aim of increasing the soil organic matter, improving soil fertility, sequestering carbon, and diminishing the dependence on both mineral fertilizer and pesticides. Insect farming consists in producing insects that can be used as a rich-in-protein and entomo-based food. Usually, detritivores are chosen, thus they can be fed with food wastes, which contributes to circular economy while producing low-carbon food. This process also produces frass, made of insect feces, exuvial material, and non-digested fibrous material, that have valuable fertilizer and biostimulation properties. But frass, used as a sole fertilizer on a crop may be not completely adequate for plants’ needs. This is why this project considers black soldier fly (termed BSF, one of the three main insect species grown commercially) frass as a complementary fertilizer, both in organic and in conventional contexts. Three kinds of experiments are made to understand the behaviour of fertilizer treatments based on frass incorporation. Lab-scale mineralization experiments suggest that BSF frass alone mineralizes more slowly than chicken manure alone (CM), but at a ratio of 90% CM-10% BSF frass, the mineralization rate of the mixture is higher than both frass and CM individually. For example, in the 7 days following the fertilization with same nitrogen amount introduced among treatments, around 80% of the nitrogen content supplied through 90% CM-10% BSF frass fertilization is present in the soil under mineral forms, compared to roughly 60% for commercial CM fertilization and 45% with BSF-frass. This suggests that BSF frass contains a more recalcitrant form of organic nitrogen than CM, but also that BSF frass has a highly active microbiota that can increase CM mineralization rate. Consequently, when progressive mineralization is needed, pure BSF-frass may be a consistent option from an agronomic aspect whereas, for specific crops that require spikes of readily available nitrogen sources (like cranberry), fast release 90CM-10BSF frass biofertilizer are more appropriate. Field experiments on cranberry suggests that, indeed, 90CM-10BSF frass is a potent candidate for organic cranberry production, as currently, organic growers rely solely on CM, whose mineralization kinetics are known to imperfectly match plant’s needs, which is known to be a major reason that sustains the current yield gap between conventional and organic cranberry sectors.

Keywords: soil mineralization, biofertilizer, BSF-frass, chicken manure, soil functions, nitrogen, soil microbiota

Procedia PDF Downloads 42
229 Isosorbide Bis-Methyl Carbonate: Opportunities for an Industrial Model Based on Biomass

Authors: Olga Gomez De Miranda, Jose R. Ochoa-Gomez, Stefaan De Wildeman, Luciano Monsegue, Soraya Prieto, Leire Lorenzo, Cristina Dineiro

Abstract:

The chemical industry is facing a new revolution. As long as processes based on the exploitation of fossil resources emerged with force in the XIX century, Society currently demands a new radical change that will lead to the complete and irreversible implementation of a circular sustainable economic model. The implementation of biorefineries will be essential for this. There, renewable raw materials as sugars and other biomass resources are exploited for the development of new materials that will partially replace their petroleum-derived homologs in a safer, and environmentally more benign approach. Isosorbide, (1,4:3,6-dianhydro-d-glucidol) is a primary bio-based derivative obtained from the plant (poly) saccharides and a very interesting example of a useful chemical produced in biorefineries. It can, in turn, be converted to other secondary monomers as isosorbide bis-methyl carbonate (IBMC), whose main field of application can be as a key biodegradable intermediary substitute of bisphenol-A in the manufacture of polycarbonates, or as an alternative to the toxic isocyanates in the synthesis of new polyurethanes (non-isocyanate polyurethanes) both with a huge application market. New products will present advantageous mechanical or optical properties, as well as improved behavior in non-toxicity and biodegradability aspects in comparison to their petro-derived alternatives. A robust production process of IBMC, a biomass-derived chemical, is here presented. It can be used with different raw material qualities using dimethyl carbonate (DMC) as both co-reactant and solvent. It consists of the transesterification of isosorbide with DMC under soft operational conditions, using different basic catalysts, always active with the isosorbide characteristics and purity. Appropriate isolation processes have been also developed to obtain crude IBMC yields higher than 90%, with oligomers production lower than 10%, independently of the quality of the isosorbide considered. All of them are suitable to be used in polycondensation reactions for polymers obtaining. If higher qualities of IBMC are needed, a purification treatment based on nanofiltration membranes has been also developed. The IBMC reaction-isolation conditions established in the laboratory have been successfully modeled using appropriate software programs and moved to a pilot-scale (production of 100 kg of IBMC). It has been demonstrated that a highly efficient IBMC production process able to be up-scaled under suitable market conditions has been obtained. Operational conditions involved the production of IBMC involve soft temperature and energy needs, no additional solvents, and high operational efficiency. All of them are according to green manufacturing rules.

Keywords: biomass, catalyst, isosorbide bis-methyl carbonate, polycarbonate, polyurethane, transesterification

Procedia PDF Downloads 104
228 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower

Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam

Abstract:

Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.

Keywords: CFD, performance, VAWT, wind power tower

Procedia PDF Downloads 360
227 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: database, electricity sub-meters, energy anomaly detection, sensor

Procedia PDF Downloads 286
226 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 138
225 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 33
224 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 147
223 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 120
222 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements

Authors: Dragan Ribarić

Abstract:

We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.

Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements

Procedia PDF Downloads 284
221 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 79
220 Origins: An Interpretive History of MMA Design Studio’s Exhibition for the 2023 Venice Biennale

Authors: Jonathan A. Noble

Abstract:

‘Origins’ is an exhibition designed and installed by MMA Design Studio, at the 2023 Venice Biennale. The instillation formed part of the ‘Dangerous Liaisons’ group exhibition at the Arsenale building. An immersive experience was created for those who visited, where video projection and the bodies of visitors interacted with the scene. Designed by South African architect, Mphethi Morojele – founder and owner of MMA – the primary inspiration for ‘Origins’ was the recent discovery by Professor Karim Sadr in 2019, of a substantial Tswana settlement. Situated in present day Suikerbosrand Nature Reserve, some 45km south of Johannesburg, this precolonial city named Kweneng, has been dated back to the fifteenth century. This remarkable discovery was achieved thanks to advanced aerial, LiDAR scanning technology, which was used to capture the traces of Kweneng, spanning a terrain of some 10km long and 2km wide. Discovered by light (LiDAR) and exhibited through light, Origins presents a simulated experience of Kweneng. The presentation of Kweneng was achieved primarily though video, with a circular projection onto the floor of an animated LiDAR data sequence, and onto the walls a filmed dance sequence choreographed to embody the architectural, spatial and symbolic significance of Kweneng. This paper documents the design process that was involved in the conceptualization, development and final realization of this noteworthy exhibition, with an elucidation upon key social and cultural questions pertaining to precolonial heritage, reimagined histories and postcolonial identity. Periods of change and of social awakening sometimes spark an interest in questions of origin, of cultural lineage and belonging – and which certainly is the case for contemporary, post-Apartheid South Africa. Researching this paper has required primary study of MMA Design Studio’s project archive, including various proposals and other design related documents, conceptual design sketches, architectural drawings and photographs. This material is supported by the authors first-hand interviews with Morejele and others who were involved, especially with respect to the choreography of the interpretive dance, LiDAR visualization techniques and video production that informed the simulated, immersive experience at the exhibition. Presenting a ‘dangerous liaison’ between architecture and dance, Origins looks into the distant past to frame contemporary questions pertaining to intangible heritage, animism and embodiment through architecture and dance – considerations which are required “to survive the future”, says Morojele.

Keywords: architecture and dance, Kweneng, MMA design studio, origins, Venice Biennale

Procedia PDF Downloads 54
219 Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA

Authors: Evgeny A. Ermakov, Lyudmila P. Smirnova, Valentina N. Buneva

Abstract:

Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia.

Keywords: anti-DNA antibodies, abzymes, DNA hydrolysis, schizophrenia

Procedia PDF Downloads 303
218 Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India

Authors: Kaleem Ahmed, Jamal A. Khan

Abstract:

Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m.

Keywords: altitude, grouping pattern, Himalayas, overlap, ungulates

Procedia PDF Downloads 114
217 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.

Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error

Procedia PDF Downloads 296
216 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 127
215 Evaluation of Differential Interaction between Flavanols and Saliva Proteins by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, V. Contreras-Cortez, R. López-Solís

Abstract:

Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. This sensation has been closely related to the interaction and precipitation between salivary proteins and polyphenols, specifically flavanols or proanthocyanidins. In addition, the type and concentration of proanthocyanidin influences significantly the intensity of the astringency and consequently the protein/proanthocyanidin interaction. However, most of the studies are based on the interaction between saliva and highly complex polyphenols, without considering the effect of monomeric proanthoancyanidins present in different foods. The aim of this study was to evaluate the effect of different monomeric proanthocyanidins on the diffusion and precipitation of salivary proteins. Thus, solutions of catechin, epicatechin, epigallocatechin and gallocatechin (0, 2.0, 4.0, 6.0, 8.0 and 10 mg/mL) were mixed with human saliva (1: 1 v/v). After incubation for 5 min at room temperature, 15 µL aliquots of each mix were dotted on a cellulose membrane and allowed to dry spontaneously at room temperature. The membrane was fixed, rinsed and stained for proteins with Coomassie blue. After exhaustive washing in 7% acetic acid, the membrane was rinsed once in distilled water and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged, and 15-μL aliquots from each of the supernatants were dotted on a cellulose membrane. The membrane was processed for protein staining as indicated above. The blue-stained area of protein distribution corresponding to each of the extract dilution-saliva mixtures was quantified by Image J 1.45 software. Each of the assays was performed at least three times. Initially, salivary proteins display a biphasic distribution on cellulose membranes, that is, when aliquots of saliva are placed on absorbing cellulose membranes, and free diffusion of saliva is allowed to occur, a non-diffusible protein fraction becomes surrounded by highly diffusible salivary proteins. In effect, once diffusion has ended, a protein-binding dye shows an intense blue-stained roughly circular area close to the spotting site (non-diffusible fraction) (NDF) which becomes surrounded by a weaker blue-stained outer band (diffusible fraction) (DF). Likewise, the diffusion test showed that epicatechin caused the complete disappearance of DF from saliva with 2 mg/mL. Also, epigallocatechin and gallocatechin caused a similar effect with 4 mg/mL, while catechin generated the same effect at 8 mg/mL. In the precipitation test, the use of epicatechin and gallocatechin generated evident precipitates at the bottom of the Eppendorf tubes. In summary, the flavanol type differentially affects the diffusion and precipitation of saliva, which would affect the sensation of astringency perceived by consumers.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 177
214 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors

Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson

Abstract:

The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.

Keywords: cooking, indoor air quality, low-cost sensor, ventilation

Procedia PDF Downloads 87
213 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 323