Search results for: water distribution systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20708

Search results for: water distribution systems

18908 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 435
18907 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval

Procedia PDF Downloads 201
18906 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 393
18905 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 196
18904 A Performance Analysis Study for Cloud Based ERP Systems

Authors: Burak Erkayman

Abstract:

The manufacturing and service organizations are in the need of using ERP systems to integrate many functions from purchasing to storage, production planning to calculation of costs. Using ERP systems by the integration in the level of information provides companies remarkable advantages in terms of profitability, productivity and efficiency in processes. Cloud computing is one of the most significant changes in information and communication technology. The developments in Cloud Computing attract business world to take advantage of this field. Cloud Computing means much more storage area, more cost saving and faster data transfer rate. In addition to these, it presents new business models, new field of study and practicable solutions for anyone’s use. These developments make inevitable the implementation of ERP systems to cloud environment. In this study, the performance of ERP systems in cloud environment is analyzed through various performance criteria and a comparison between traditional and cloud-ERP systems is presented. At the end of study the transformation and the future of ERP systems is discussed.

Keywords: cloud-ERP, ERP system performance, information system transformation

Procedia PDF Downloads 529
18903 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends

Authors: Dena Alhaloul

Abstract:

The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.

Keywords: fertility, distribution, modeling, regression

Procedia PDF Downloads 81
18902 Physicochemical Analysis of Ground Water of Selected Areas of Oji River in Enugu State, Nigeria

Authors: C. Akpagu Francis, V. Nnamani Emmanuel

Abstract:

Drinking and use of polluted water from ponds, rivers, lakes, etc. for other domestic activities especially by the larger population in the rural areas has been a major source of health problems to man. A study was carried out in two different ponds in Oji River, Enugu State of Nigeria to determine the extent of total dissolved solid (TDS), metals (lead, cadmium, iron, zinc, manganese, calcium), biochemical oxygen demand (BOD). Samples of water were collected from two different ponds at a distance of 510, and 15 metres from the point of entry into the ponds to fetch water. From the results obtained, TDS (751.6Mg/l), turbidity (24ftu), conductivity (1193µs/cm), cadmium (0.008Mg/l) and lead (0.03mg/t) in pond A (PA) were found to have exceeded the WHO standard. Also in pond B (PB) the results shows that TDS (760.30Mg/l), turbidity (26ftu), conductivity (1195µs/cm), cadmium (0.008mg/l) and lead (0.03Mg/l) were also found to have exceeded the WHO standard which makes the two ponds. Water very unsafe for drinking and use in other domestic activities.

Keywords: physicochemical, groundwater, Oji River, Nigeria

Procedia PDF Downloads 461
18901 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 376
18900 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources

Authors: PR

Abstract:

Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.

Keywords: artificial intelligence, renewable energy sources, spiral model, optimize

Procedia PDF Downloads 8
18899 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 199
18898 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well-known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: functionally graded material, pressure, steady state creep, thick-cylinder

Procedia PDF Downloads 477
18897 Sustainable Manufacturing and Performance of Ceramic Membranes

Authors: Obsi Terfasa, Bhanupriya Das, Mithilish Passawan

Abstract:

The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology.

Keywords: ceramic membrane, Coulombic efficiency, electro-chemical kinetics, fly ash, proton conductivity, microbial fuel cell

Procedia PDF Downloads 36
18896 Availability and Utilization of Health Care Facilities in Jalpaiguri Town

Authors: Sharmistha Mukherjee

Abstract:

Health care is the basic requirement for all. The prime question is who gets what, where and how? The unequal distribution of basic facilities do have a adverse effect on the users. The paper tries to examine health care in terms of available facilities, the health care need and how people perceive to it in a small town of Jalpaiguri in the midst of tea gardens in North Bengal. The morbidity pattern is also minutely observed with a section describing the organizational structure of health care keeping in mind the utilization.

Keywords: availability, distribution, health care, utilization

Procedia PDF Downloads 522
18895 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators

Authors: Engy A. Mohamed, Y. G. Hegazy

Abstract:

This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.

Keywords: comulative distribution function, distributed generation, Monte Carlo

Procedia PDF Downloads 584
18894 Prioritizing Ecosystem Services for South-Central Regions of Chile: An Expert-Based Spatial Multi-Criteria Approach

Authors: Yenisleidy Martinez Martinez, Yannay Casas-Ledon, Jo Dewulf

Abstract:

The ecosystem services (ES) concept has contributed to draw attention to the benefits ecosystems generate for people and how necessary natural resources are for human well-being. The identification and prioritization of the ES constitute the first steps to undertake conservation and valuation initiatives on behalf of people. Additionally, mapping the supply of ES is a powerful tool to support decision making regarding the sustainable management of landscape and natural resources. In this context, the present study aimed to identify, prioritize and map the primary ES in Biobio and Nuble regions using a methodology that combines expert judgment, multi-attribute evaluation methods, and Geographic Information Systems (GIS). Firstly, scores about the capacity of different land use/cover types to supply ES and the importance attributed to each service were obtained from experts and stakeholders via an online survey. Afterward, the ES assessment matrix was constructed, and the weighted linear combination (WLC) method was applied to mapping the overall capacity of supply of provisioning, regulating and maintenance, and cultural services. Finally, prioritized ES for the study area were selected and mapped. The results suggest that native forests, wetlands, and water bodies have the highest supply capacities of ES, while urban and industrial areas and bare areas have a very low supply of services. On the other hand, fourteen out of twenty-nine services were selected by experts and stakeholders as the most relevant for the regions. The spatial distribution of ES has shown that the Andean Range and part of the Coastal Range have the highest ES supply capacity, mostly regulation and maintenance and cultural ES. This performance is related to the presence of native forests, water bodies, and wetlands in those zones. This study provides specific information about the most relevant ES in Biobio and Nuble according to the opinion of local stakeholders and the spatial identification of areas with a high capacity to provide services. These findings could be helpful as a reference by planners and policymakers to develop landscape management strategies oriented to preserve the supply of services in both regions.

Keywords: ecosystem services, expert judgment, mapping, multi-criteria decision making, prioritization

Procedia PDF Downloads 126
18893 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model

Authors: V. S. Manivasagam, R. Nagarajan

Abstract:

Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.

Keywords: AquaCrop, crop modeling, rainfed maize, water stress

Procedia PDF Downloads 269
18892 Amphibians and Water Quality: An Assessment of Diversity and Physico-Chemical Parameters of Habitats for Amphibians in Sindh, Pakistan

Authors: Kalsoom Shaikh, Saima Memon, Riffat Sultana

Abstract:

Water pollution affects amphibians because they are intimately water dependent. The permeable skin makes amphibians very sensitive to the physico-chemical parameters of their aquatic environment. They spawn in water bodies where quality of water can affect the growth, development, and survival of their eggs which may die even before hatching into larvae or developing into adults due to water contamination. Considering the importance of amphibians in agriculture, food web, ecosystem and pharmaceutics as well as adverse impact of environmental degradation on them, present study was proposed to comprehensively determine the status of their diversity and habitats in Sindh province of Pakistan so as to execute monitoring for their conservation in future. Physico-chemical parameters including pH, EC (electric conductivity), TDS (total dissolved solids), T-Hard (total hardness), T-Alk (total alkalinity), Cl (chloride), CO₂ (carbon dioxide), SO₄ (sulphate), PO₄ (phosphate), NO₂ (nitrite) and NO₃ (nitrate) were analyzed from amphibian habitats using instruments and methodology of analytical grade. The results of present study after being compared with scientific data provided by different researchers and EPA (environmental protection agency), it was concluded that amphibian habitats consisted of high values of analyzed parameters except pH and CO₂. Entire study area required an urgent implementation of conservation actions for saving amphibians.

Keywords: amphibians, diversity, habitats, physico-chemical parameters, water quality, Pakistan, Sindh Province

Procedia PDF Downloads 224
18891 Nonlinear Equations with n-Dimensional Telegraph Operator Iterated K-Times

Authors: Jessada Tariboon

Abstract:

In this article, using distribution kernel, we study the nonlinear equations with n-dimensional telegraph operator iterated k-times.

Keywords: telegraph operator, elementary solution, distribution kernel, nonlinear equations

Procedia PDF Downloads 489
18890 Role of Numerical Simulation as a Tool to Enhance Climate Change Adaptation and Resilient Societies: A Case Study from the Philippines

Authors: Pankaj Kumar

Abstract:

Rapid global changes resulted in unfavorable hydrological, ecological, and environmental changes and cumulatively affected natural resources. As a result, the local communities become vulnerable to water stress, poor hygiene, the spread of diseases, food security, etc.. However, the central point for this vulnerability revolves around water resources and the way people interrelate with the hydrological system. Also, most of the efforts to minimize the adverse effect of global changes are centered on the mitigation side. Hence, countries with poor adaptive capacities and poor governance suffer most in case of disasters. However, several transdisciplinary numerical tools are well designed and are capable of answering “what-if questions” through scenario analysis using a system approach. This study has predicted the future water environment in Marikina River in the National Capital Region, Metro Manila of Philippines, using Water Evaluation and Planning (WEAP), an integrated water resource management tool. Obtained results can answer possible adaptation measures along with their associated uncertainties. It also highlighted various challenges for the policy planners to design adaptation countermeasures as well as to track the progress of achieving SDG 6.0.

Keywords: water quality, Philippines, climate change adaptation, hydrological simulation, wastewater management, weap

Procedia PDF Downloads 105
18889 Workload and Task Distribution in Public Healthcare: A Qualitative Explorative Study From Nurse Leaders’ Perceptions

Authors: Jessica Hemberg, Mikaela Miller

Abstract:

Unreasonable workload and work-related stress can reduce nurse leaders’ job satisfaction and productivity and can increase absence and burnout. Nurse leaders’ workload in public healthcare settings is relatively unresearched. The aim of this study was to investigate nurse leaders’ perceptions of workload and task distribution with relation to leading work tasks in public healthcare. A qualitative explorative design was used. The data material consisted of texts from interviews with nurse leaders in public healthcare (N=8). The method was inspired by content analysis. The COREQ checklist was used. Informed consent was sought from the participants regarding study participation and the storage and handling of data for research purposes. Six main themes were found: Increased and unreasonable workload, Length of work experience as nurse leader affects perception of workload, Number of staff and staff characteristics affect perception of workload, Versatile and flexible task distribution, Working overtime as a way of managing high workload, and Insufficient time for leadership mission. The workload for nurse leaders in a public healthcare setting was perceived to be unreasonable. Common measures for managing high workload included working overtime, delegating work tasks and organizing more staff resources in the form of additional staff. How nurse leaders perceive their workload was linked to both the number of staff and staff characteristics. These should both be considered equally important when determining staff levels and measuring nurse leaders’ workload. Future research should focus on investigating workload and task distribution from nurses’ perspectives.

Keywords: nurse leaders, workload, task distribution, public healthcare, qualitative

Procedia PDF Downloads 105
18888 Groundwater Based Irrigation for Paddy Farming in Gangetic Plains of India: Consequences and Mitigations

Authors: Dhananjoy Dutta

Abstract:

Field studies in lower Gangetic plains of India reveal that over-abstraction of groundwater for irrigation to paddy leads to a substantial depletion of groundwater over the decades, resulting in negative effects on lowering of the water table, drying up of surface water sources and aquifer pollution with leached-out arsenic. The aggravating arsenic toxicity in drinking water is manifested in health problems and ‘arsenicosis’ of people. A social conflict arises between farmers, who intend to grow paddy for livelihoods, and the groundwater authority, which enacts the ‘Regulation Laws’ by putting a check on the excessive installation of private tube-wells for irrigation. Hence, considering the challenges of resource sustainability, health issues, and food security, the study calls for a paradigm shift in policy from further groundwater development to sustainable water resources management and evaluates some strategies integrating supply and demand side management for mitigating the problems.

Keywords: groundwater, irrigation, paddy farming, water table depletion, arsenic pollution, gangetic plains

Procedia PDF Downloads 30
18887 Potential Risk Factors Associated with Sole Hemorrhages Causing Lameness in Egyptian Water Buffaloes and Native Breed Cows

Authors: Waleed El-Said Abou El-Amaiem

Abstract:

Sole hemorrhages are considered as a main cause for sub clinical laminitis. In this study we aimed at discussing the most prominent risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. The final multivariate logistic regression model showed, a significant association between sub acute ruminal acidosis (P< 0.05), limb affected (P< 0.05) and weight (P< 0.05) and sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. According to our knowledge, this is the first paper to discuss the risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows.

Keywords: lameness, buffalo, sole hemorrhages, breed cows

Procedia PDF Downloads 451
18886 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 496
18885 Protein-Thiocyanate Composite as a Sensor for Iron III Cations

Authors: Hosam El-Sayed, Amira Abou El-Kheir, Salwa Mowafi, Marwa Abou Taleb

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample.

Keywords: iron III cations, protein, sensor, thiocyanate, water

Procedia PDF Downloads 429
18884 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 444
18883 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C

Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh

Abstract:

The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.

Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress

Procedia PDF Downloads 131
18882 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes

Authors: Asmaa Selim, Peter Mizsey

Abstract:

Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.

Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles

Procedia PDF Downloads 170
18881 Vaporization of a Single N-Pentane Liquid Drop in a Flowing Immiscible Liquid Media

Authors: Hameed B. Mahood, Ali Sh. Baqir

Abstract:

Vaporization of a single n-pentane drop in a direct contact with another flowing immiscible liquid (warm water) has been experimentally investigated. The experiments were carried out utilising a cylindrical Perspex tube of diameter 10 cm and height and 150 cm. Saturated liquid n-pentane and warm water at 45oC were used as the dispersed and continuous phases, respectively. Photron FASTCAM SA 1.1high speed camera (75,000f/s) with software V. 321 was implemented during the experiments. Five different continuous phase flow rates (warm water) (10, 20, 30, 40, and 46 L⁄h) were used in the study. The results indicated that the increase of the continuous phase (warm water) flow rate results in increasing of the drop/bubble diameter.

Keywords: drop evaporation, direct contact heat transfer, drop/bubble growth, experimental technique

Procedia PDF Downloads 353
18880 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 85
18879 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 436