Search results for: robotic experiments
1731 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.Keywords: biosorption, banana peels, isothermal models, manganese
Procedia PDF Downloads 3691730 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 1841729 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry
Authors: Balraju Vadlakonda, Narasimha Mangadoddy
Abstract:
The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy
Procedia PDF Downloads 5101728 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques
Authors: Mei-Yi Wu, Shang-Ming Huang
Abstract:
The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.Keywords: mobile image retrieval, text mining, product information service system, online marketing
Procedia PDF Downloads 3591727 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 1001726 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 1361725 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery
Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf
Abstract:
Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.Keywords: boosted, bioremediation, closed system, aeration, uptake, wastewater
Procedia PDF Downloads 2561724 Nonlinear Analysis of Postural Sway in Multiple Sclerosis
Authors: Hua Cao, Laurent Peyrodie, Olivier Agnani, Cecile Donze
Abstract:
Multiple sclerosis (MS) is a disease, which affects the central nervous system, and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. Forty volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and two types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.Keywords: balance, multiple sclerosis, nonlinear analysis, postural sway
Procedia PDF Downloads 3381723 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm
Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo
Abstract:
Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation
Procedia PDF Downloads 791722 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution
Procedia PDF Downloads 1291721 Bioefficacy of Novel Insecticide Flupyradifurone Sl 200 against Leaf Hoppers, Aphids and Whitefly in Cotton
Authors: N. V. V. S. D. Prasad
Abstract:
Field experiments were conducted at Regional Agricultural Research Station, Lam, Guntur, Andhra Pradesh, India for two seasons during 2011-13 to evaluate the efficacy of flupyradifurone SL 200 a new class of insecticide in butenolide group against leaf hoppers, aphids and whitefly in Cotton. The test insecticide flupyradifurone 200 was evaluated at three doses @ 150, 200 and 250 g ai/ha ha along with imidacloprid 200 SL @ 20g ai/ha, acetamiprid 20 SP @ 20g ai/ha, thiamethoxam 25 WG @ 25g ai/ha and monocrotophos 36 SL @ 360 g ai/ha as standards. Flupyradifurone SL 200 even at lower dose of 150g ai/ha exhibited superior efficacy against cotton leafhopper, Amrasca devastans than the neonicotinoids which are widely used for control of sucking pests in cotton. Against cotton aphids, Aphis gossypii. Flupyradifurone SL 200 @ 200 and 250 g ai/ha ha was proved to be effective and the lower dose @ 150g ai/ha performed better than some of the neonicotinoids. The effect of flupyradifurone SL 200 on cotton against whitefly, Bemisia tabaci was evident at higher doses of 200 and 250 g ai/ha and superior to all standard treatments, however, the lower dose is at par with neonicotinoids. The seed cotton yield of flupyradifurone 200 SL at all the doses tested was superior than imidacloprid 200 SL @ 20g ai/ha and acetamiprid 20 SP @ 20g ai/ha. There is no significant difference among the insecticidal treatments with regards to natural enemies. The results clearly suggest that flupyradifurone is a new tool to combat sucking pest problems in cotton and can well fit in IRM strategies in light of wide spread insecticide resistance in cotton sucking pests.Keywords: cotton, flupyradifurone, neonicotinoids, sucking pests
Procedia PDF Downloads 1921720 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method
Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine
Abstract:
This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR
Procedia PDF Downloads 641719 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness
Procedia PDF Downloads 3291718 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.Keywords: sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device
Procedia PDF Downloads 2971717 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 1771716 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH effect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 3121715 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology
Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai
Abstract:
In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater
Procedia PDF Downloads 3441714 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization
Procedia PDF Downloads 3541713 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1991712 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism
Authors: Jun-ya Nagase
Abstract:
There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion
Procedia PDF Downloads 4311711 Studies on Dye Removal by Aspergillus niger Strain
Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy
Abstract:
For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.Keywords: biomass, biosorption, dye, isotherms
Procedia PDF Downloads 3051710 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 3231709 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 4951708 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still
Authors: Piyush Pal, Rahul Dev
Abstract:
Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.Keywords: contaminated water, conventional solar still, modified solar still, wick
Procedia PDF Downloads 4321707 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize, achieve and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, CSTR
Procedia PDF Downloads 2401706 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 1011705 Test of Moisture Sensor Activation Speed
Authors: I. Parkova, A. Vališevskis, A. Viļumsone
Abstract:
Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.Keywords: conductive yarns, moisture textile sensor, industry, material
Procedia PDF Downloads 2461704 The Clarification of Palm Oil Wastewater Treatment by Coagulant Composite from Palm Oil Ash
Authors: Rewadee Anuwattana, Narumol Soparatana, Pattamaphorn Phuangngamphan, Worapong Pattayawan, Atiporn Jinprayoon, Saroj Klangkongsap, Supinya Sutthima
Abstract:
In this work focus on clarification in palm oil wastewater treatment by using coagulant composite from palm oil ash. The design of this study was carried out by two steps; first, synthesis of new coagulant composite from palm oil ash which was fused by using Al source combined with Fe source and form to the crystal by the hydrothermal crystallization process. The characterization of coagulant composite from palm oil ash was analyzed by advanced instruments, and The pattern was analyzed by X-ray Diffraction (XRD), chemical composition by X-Ray Fluorescence (XRFS) and morphology characterized by SEM. The second step, the clarification wastewater treatment efficiency of synthetic coagulant composite, was evaluated by coagulation/flocculation process based on the COD, turbidity, phosphate and color removal of wastewater from palm oil factory by varying the coagulant dosage (1-8 %w/v) with no adjusted pH and commercial coagulants (Alum, Ferric Chloride and poly aluminum chloride) which adjusted the pH (6). The results found that the maximum removal of 6% w/v of synthetic coagulant from palm oil ash can remove COD, turbidity, phosphate and color was 88.44%, 93.32%, 93.32% and 93.32%, respectively. The experiments were compared using 6% w/v of commercial coagulants (Alum, Ferric Chloride and Polyaluminum Chloride) can remove COD of 74.29%, 71.43% and 57.14%, respectively.Keywords: coagulation, coagulant, wastewater treatment, waste utilization, palm oil ash
Procedia PDF Downloads 1911703 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize
Authors: Shirley Lamptey, Lingling Li, Junhong Xie
Abstract:
Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.Keywords: carbon emission, carbon emission efficiency, C sequestration, N rates, semi-arid
Procedia PDF Downloads 2361702 A Thermodynamic Study of Parameters that Affect the Nitration of Glycerol with Nitric Acid
Authors: Erna Astuti, Supranto, Rochmadi, Agus Prasetya
Abstract:
Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25o C and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.Keywords: Nitration, glycerol, thermodynamic, optimum condition
Procedia PDF Downloads 316