Search results for: reduced order models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22507

Search results for: reduced order models

20737 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 378
20736 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada

Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya

Abstract:

Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.

Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability

Procedia PDF Downloads 114
20735 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 419
20734 Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis

Procedia PDF Downloads 259
20733 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization

Procedia PDF Downloads 216
20732 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids

Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit

Abstract:

Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.

Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations

Procedia PDF Downloads 175
20731 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach

Authors: Ahmed Elbeheri, Tarek Zayed

Abstract:

Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.

Keywords: steel bridge, bridge inspection, steel corrosion, image processing

Procedia PDF Downloads 308
20730 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market

Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani

Abstract:

In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial ‎results.

Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)

Procedia PDF Downloads 363
20729 The Effect of Artificial Intelligence on Digital Marketing

Authors: Magdi Kamil Shafik Zekry

Abstract:

The variety of available virtual equipment, strategies and activities may confuse and disorient even an experienced marketer. this is applicable mainly to B2B organizations, which might be generally less flexible in uptaking of virtual era than B2C businesses. B2B groups are lacking a framework that corresponds to the specifics of the B2B enterprise, and which facilitates to assess a business enterprise’s talents and to select the precise course. A B2B digital marketing adulthood model facilitates to fill this gap. however, modern-day advertising gives no widely permitted digital marketing adulthood model, and consequently, some marketing establishments offer their personal tools. The cause of this paper is constructing an optimized B2B virtual advertising and marketing maturity version based totally on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of present models. The contemporary have a look at gives an analytical assessment of the existing virtual advertising adulthood models with open get entry to. The effects of the studies are twofold. First, the furnished SWOT analysis outlines the principle blessings and disadvantages of current fashions. Secondly, the strengths of existing virtual advertising maturity models, enables to discover the primary traits and the structure of an optimized B2B virtual advertising adulthood version. The research findings imply that most effective one out of three analyzed fashions may be used as a separate tool. This look at is a number of the first inspecting the usage of maturity models in virtual marketing. It helps businesses to select among the present virtual advertising fashions, the best one. furthermore, it creates a base for destiny research on virtual advertising adulthood fashions. This study contributes to the emerging B2B virtual advertising and marketing literature by using offering a SWOT analysis of the present virtual marketing maturity fashions and suggesting a structure and fundamental characteristics of an optimized B2B digital advertising adulthood model.

Keywords: electronics engineering, marketing, sales, E-commercedigital marketing, digital maturity, innovation, SMEsB2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis

Procedia PDF Downloads 19
20728 Using Variation Theory in a Design-based Approach to Improve Learning Outcomes of Teachers Use of Video and Live Experiments in Swedish Upper Secondary School

Authors: Andreas Johansson

Abstract:

Conceptual understanding needs to be grounded on observation of physical phenomena, experiences or metaphors. Observation of physical phenomena using demonstration experiments has a long tradition within physics education and students need to develop mental models to relate the observations to concepts from scientific theories. This study investigates how live and video experiments involving an acoustic trap to visualize particle-field interaction, field properties and particle properties can help develop students' mental models and how they can be used differently to realize their potential as teaching tools. Initially, they were treated as analogs and the lesson designs were kept identical. With a design-based approach, the experimental and video designs, as well as best practices for a respective teaching tool, were then developed in iterations. Variation theory was used as a theoretical framework to analyze the planned respective realized pattern of variation and invariance in order to explain learning outcomes as measured by a pre-posttest consisting of conceptual multiple-choice questions inspired by the Force Concept Inventory and the Force and Motion Conceptual Evaluation. Interviews with students and teachers were used to inform the design of experiments and videos in each iteration. The lesson designs and the live and video experiments has been developed to help teachers improve student learning and make school physics more interesting by involving experimental setups that usually are out of reach and to bridge the gap between what happens in classrooms and in science research. As students’ conceptual knowledge also rises their interest in physics the aim is to increase their chances of pursuing careers within science, technology, engineering or mathematics.

Keywords: acoustic trap, design-based research, experiments, variation theory

Procedia PDF Downloads 86
20727 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 502
20726 Carotenoids a Biologically Important Bioactive Compound

Authors: Aarti Singh, Anees Ahmad

Abstract:

Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostrate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene plays a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have major role in the treatment of skin disorders. There is need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.

Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals

Procedia PDF Downloads 379
20725 Analysis of the 2023 Karnataka State Elections Using Online Sentiment

Authors: Pranav Gunhal

Abstract:

This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.

Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections

Procedia PDF Downloads 86
20724 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 84
20723 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 202
20722 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 229
20721 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 107
20720 Analysis of Expert Information in Linguistic Terms

Authors: O. Poleshchuk, E. Komarov

Abstract:

In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.

Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies

Procedia PDF Downloads 533
20719 Proposal of Design Method in the Semi-Acausal System Model

Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented

Procedia PDF Downloads 488
20718 High Performance Computing Enhancement of Agent-Based Economic Models

Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna

Abstract:

This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).

Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process

Procedia PDF Downloads 131
20717 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 183
20716 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 76
20715 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines

Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno

Abstract:

The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.

Keywords: household water uses, socio-economic classes, urban planning, urban water demand management

Procedia PDF Downloads 308
20714 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 72
20713 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 254
20712 The Characteristics of Transformation of Institutional Changes and Georgia

Authors: Nazira Kakulia

Abstract:

The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.

Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system

Procedia PDF Downloads 267
20711 Classification of High Order Thinking Skills (HOTS)

Authors: Mohammed Alkiyumi

Abstract:

Educational systems are currently paying special attention to developing learners' higher thinking skills to develop the capabilities of human resources to deal with contemporary challenges. Although psychologists disagree about the concept of higher-order thinking skills and the skills they include, there is unlimited effort in designing them and building strategies for their implementation. The most important factor helping to develop these skills is their classification according to specific criteria, and the most important of these classifications is Bloom's classification, which is dominant in most educational systems at all levels. Previous classifications have many limitations, including the comprehensiveness of the skills they contain, the logical structure of their hierarchy, and classification criteria. Therefore, this article puts another step in this area by providing a new classification of higher-order thinking skills that includes five categories: the first response stage, transformative stage, application, reasoning stage, and the production stage with a logical justification for this classification, with some techniques to developing it among learners.

Keywords: high-order thinking skills, classification, teaching, education

Procedia PDF Downloads 56
20710 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite

Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu

Abstract:

Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.

Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils

Procedia PDF Downloads 136
20709 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 139
20708 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 68