Search results for: mode prediction
2408 Evaluating Bus System as a Transportation Mode in Gaza Strip–Palestine Using GIS
Authors: Mohammed Alokshiya, Alaeddinne D. Eljamassi
Abstract:
This study discusses the condition of bus service in Gaza Strip through testing certain hypotheses assuming that public is not satisfied with bus system in Gaza. This testing is proceeded using questionnaire. The study also includes the evaluation of ten bus stops in Gaza city as a case study using GIS, and suggests a design case study for the bus system in the university zone in Gaza city. The research indicates that there is a general dissatisfaction with bus system in Gaza Strip, with respect to buses in service, drivers and bus stops. The study also gives a design for a bus stop and its frequency in university zone in Gaza city. Finally, the researcher recommends that more interest should be given to bus system, through actual procedures such as insuring the suitability of bus for transferring passengers before updating bus license, decreasing taxes of importing new buses, and holding awareness raising sessions for bus drivers.Keywords: public transport, bus system, public satisfaction, bus stop locating
Procedia PDF Downloads 3382407 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste
Authors: L. Rozumová, J. Seidlerová
Abstract:
The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.Keywords: blast furnace sludge, lead, zinc, sorption
Procedia PDF Downloads 3022406 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 1692405 Regularizing Software for Aerosol Particles
Authors: Christine Böckmann, Julia Rosemann
Abstract:
We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization
Procedia PDF Downloads 3432404 Transducers for Measuring Displacements of Rotating Blades in Turbomachines
Authors: Pavel Prochazka
Abstract:
The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors
Procedia PDF Downloads 1292403 Nonlinear Modeling of the PEMFC Based on NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear modeling, NNARX
Procedia PDF Downloads 3812402 Airport Investment Risk Assessment under Uncertainty
Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino
Abstract:
The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.Keywords: airports, fuzzy logic, risk, uncertainty
Procedia PDF Downloads 4132401 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate
Authors: Arpit Bhardwaj, Koushik Roy
Abstract:
The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.Keywords: free vibration, multilayered plates, surface loading, quasicrystals
Procedia PDF Downloads 1472400 An Approach for Modeling CMOS Gates
Authors: Spyridon Nikolaidis
Abstract:
A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model
Procedia PDF Downloads 4232399 Control of Hybrid System Using Fuzzy Logic
Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi
Abstract:
This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control
Procedia PDF Downloads 5552398 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 5832397 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage
Authors: Madhu Jain, Rakesh Kumar Meena
Abstract:
This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique
Procedia PDF Downloads 2922396 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier
Authors: Kittipong Tripetch
Abstract:
This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumptionKeywords: grounded active inductor, floating active inductor, fully differential bandpass amplifier
Procedia PDF Downloads 4262395 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 1782394 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams
Authors: Woo-Young Jung, Minho Kwon
Abstract:
Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete
Procedia PDF Downloads 3512393 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis
Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon
Abstract:
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables
Procedia PDF Downloads 3552392 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4172391 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient
Procedia PDF Downloads 4122390 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme
Authors: Shahram Jamali, Samira Hamed
Abstract:
One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.Keywords: active queue management, RED, Markov model, random early detection algorithm
Procedia PDF Downloads 5392389 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1892388 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives
Authors: Z. Bayat
Abstract:
A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.Keywords: DFT, adamantane, QSAR, Kovat
Procedia PDF Downloads 3662387 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6432386 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
Authors: Jisong Zhang, Yinghua Zhao
Abstract:
The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete
Procedia PDF Downloads 4142385 UniFi: Universal Filter Model for Image Enhancement
Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh
Abstract:
Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.Keywords: universal filter, image enhancement, neural networks, computer vision
Procedia PDF Downloads 1012384 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number
Authors: Hichem Boulechfar, Mahfoud Djezzar
Abstract:
Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.Keywords: double diffusive, natural convection, porous media, elliptical annulus
Procedia PDF Downloads 2102383 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Ahmed Bakry, Moustafa Ahmed
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser
Procedia PDF Downloads 6412382 Finite Element Analysis of Reinforced Structural Walls
Authors: Mintesinot Teshome Mengsha
Abstract:
Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity.Keywords: ABAQUS, finite element method, small openings, reinforced concrete structural walls
Procedia PDF Downloads 552381 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 4302380 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sublfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of filters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-filter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying filter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The significance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II filters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the filter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic filter, aspect ratios (AR) ranging from 1 to 16 in LES filters are evaluated. The findings highlight the DDM's proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as filter anisotropy intensify, the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all filter-anisotropy scenarios. The findings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 752379 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 137