Search results for: maturity classification
705 Analysis of the 2023 Karnataka State Elections Using Online Sentiment
Authors: Pranav Gunhal
Abstract:
This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections
Procedia PDF Downloads 84704 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network
Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon
Abstract:
In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.Keywords: neural network, pineapple, soluble solid content, spectroscopy
Procedia PDF Downloads 72703 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 288702 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 169701 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS
Authors: Bashar Al-Sabti, Jehad Harbali
Abstract:
Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS
Procedia PDF Downloads 95700 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 133699 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, online marketplace, marketing, recommendation systems
Procedia PDF Downloads 112698 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment
Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian
Abstract:
Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB
Procedia PDF Downloads 518697 Risking Injury: Exploring the Relationship between Risk Propensity and Injuries among an Australian Rules Football Team
Authors: Sarah A. Harris, Fleur L. McIntyre, Paola T. Chivers, Benjamin G. Piggott, Fiona H. Farringdon
Abstract:
Australian Rules Football (ARF) is an invasion based, contact field sport with over one million participants. The contact nature of the game increases exposure to all injuries, including head trauma. Evidence suggests that both concussion and sub-concussive traumas such as head knocks may damage the brain, in particular the prefrontal cortex. The prefrontal cortex may not reach full maturity until a person is in their early twenties with males taking longer to mature than females. Repeated trauma to the pre-frontal cortex during maturation may lead to negative social, cognitive and emotional effects. It is also during this period that males exhibit high levels of risk taking behaviours. Risk propensity and the incidence of injury is an unexplored area of research. Little research has considered if the level of player’s (especially younger players) risk propensity in everyday life places them at an increased risk of injury. Hence the current study, investigated if a relationship exists between risk propensity and self-reported injuries including diagnosed concussion and head knocks, among male ARF players aged 18 to 31 years. Method: The study was conducted over 22 weeks with one West Australian Football League (WAFL) club during the 2015 competition. Pre-season risk propensity was measured using the 7-item self-report Risk Propensity Scale. Possible scores ranged from 9 to 63, with higher scores indicating higher risk propensity. Players reported their self-perceived injuries (concussion, head knocks, upper body and lower body injuries) fortnightly using the WAFL Injury Report Survey (WIRS). A unique ID code was used to ensure player anonymity, which also enabled linkage of survey responses and injury data tracking over the season. A General Linear Model (GLM) was used to analyse whether there was a relationship between risk propensity score and total number of injuries for each injury type. Results: Seventy one players (N=71) with an age range of 18.40 to 30.48 years and a mean age of 21.92 years (±2.96 years) participated in the study. Player’s mean risk propensity score was 32.73, SD ±8.38. Four hundred and ninety five (495) injuries were reported. The most frequently reported injury was head knocks representing 39.19% of total reported injuries. The GLM identified a significant relationship between risk propensity and head knocks (F=4.17, p=.046). No other injury types were significantly related to risk propensity. Discussion: A positive relationship between risk propensity and head trauma in contact sports (specifically WAFL) was discovered. Assessing player’s risk propensity therefore, may identify those more at risk of head injuries. Potentially leading to greater monitoring and education of these players throughout the season, regarding self-identification of head knocks and symptoms that may indicate trauma to the brain. This is important because many players involved in WAFL are in their late teens or early 20’s hence, may be at greater risk of negative outcomes if they experience repeated head trauma. Continued education and research into the risks associated with head injuries has the potential to improve player well-being.Keywords: football, head injuries, injury identification, risk
Procedia PDF Downloads 333696 Social Inclusion Challenges in Indigenous Communities: Case of the Baka Pygmies Community of Cameroon
Authors: Igor Michel Gachig, Samanta Tiague
Abstract:
Baka ‘Pygmies’ is an indigenous community living in the rainforest region of Cameroon. This community is known to be poor and marginalized from the political, economic and social life, regardless of sedentarization and development efforts. In fact, the social exclusion of ‘Pygmy’ people prevents them from gaining basic citizen’s rights, among which access to education, land, healthcare, employment and justice. In this study, social interactions, behaviors, and perceptions were considered. An interview guide and focus group discussions were used to collect data. A sample size of 97 was used, with 60 Baka Pygmies and 37 Bantus from two Baka-Bantu settlements/villages of the south region of Cameroon. The data were classified in terms of homogenous, exhaustive and exclusive categories. This classification has enabled factors explaining social exclusion in the Baka community to be highlighted using content analysis. The study shows that (i) limited access to education, natural resources and care in modern healthcare organizations, and (ii) different views on the development expectations and integration approaches both highlight the social exclusion in the Baka ‘Pygmies’ community. Therefore, an effective and adequate social integration of ‘Pygmies’ based on cultural peculiarities and identity, as well as reduction of disparities and improvement of their access to education should be of major concern to the government and policy makers.Keywords: development, indigenous people, integration, social exclusion
Procedia PDF Downloads 136695 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices
Authors: Ganesh B. Shinde, Vijaya B. Musande
Abstract:
Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices
Procedia PDF Downloads 318694 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 21693 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment
Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang
Abstract:
Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique
Procedia PDF Downloads 397692 Evaluation and Assessment of Bioinformatics Methods and Their Applications
Authors: Fatemeh Nokhodchi Bonab
Abstract:
Bioinformatics, in its broad sense, involves application of computer processes to solve biological problems. A wide range of computational tools are needed to effectively and efficiently process large amounts of data being generated as a result of recent technological innovations in biology and medicine. A number of computational tools have been developed or adapted to deal with the experimental riches of complex and multivariate data and transition from data collection to information or knowledge. These bioinformatics tools are being evaluated and applied in various medical areas including early detection, risk assessment, classification, and prognosis of cancer. The goal of these efforts is to develop and identify bioinformatics methods with optimal sensitivity, specificity, and predictive capabilities. The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems.Keywords: methods, applications, transcriptional regulatory systems, techniques
Procedia PDF Downloads 127691 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 325690 QTAIM View of Metal-Metal Bonding in Trinuclear Mixed-Metal Bridged Ligand Clusters Containing Ruthenium and Osmium
Authors: Nadia Ezzat Al-Kirbasee, Ahlam Hussein Hassan, Shatha Raheem Helal Alhimidi, Doaa Ezzat Al-Kirbasee, Muhsen Abood Muhsen Al-Ibadi
Abstract:
Through DFT/QTAIM calculations, we have provided new insights into the nature of the M-M, M-H, M-O, and M-C bonds of the (Cp*Ru)n(Cp*Os)3−n(μ3-O)2(μ-H)(Cp* = η5-C5Me5, n= 3,2,1,0). The topological analysis of the electron density reveals important details of the chemical bonding interactions in the clusters. Calculations confirm the absence of bond critical points (BCP) and the corresponding bond paths (BP) between Ru-Ru, Ru-Os, and Os-Os. The position of bridging hydrides and Oxo atoms coordinated to Ru-Ru, Ru-Os, and Os-Os determines the distribution of the electron densities and which strongly affects the formation of the bonds between these transition metal atoms. On the other hand, the results confirm that the four clusters contain a 6c–12e and 4c–2e bonding interaction delocalized over M3(μ-H)(μ-O)2 and M3(μ-H), respectively, as revealed by the non-negligible delocalization indexes calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for laplacian ∇2ρ(b) and the small negative values for total energy density H(b) are shown by the Ru-H, Os-H, Ru-O, and Os-O bonds in the four clusters are typical of open shell interactions. Also, the topological data for the bonds between Ru and Os atoms with the C atoms of the pentamethylcyclopentadienyl (Cp*) ring ligands are basically similar and show properties very consistent with open shell interactions in the QTAIM classification.Keywords: metal-metal and metal-ligand interactions, organometallic complexes, topological analysis, DFT and QTAIM analyses
Procedia PDF Downloads 93689 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 132688 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 142687 Genomic Diversity and Relationship among Arabian Peninsula Dromedary Camels Using Full Genome Sequencing Approach
Authors: H. Bahbahani, H. Musa, F. Al Mathen
Abstract:
The dromedary camels (Camelus dromedarius) are single-humped even-toed ungulates populating the African Sahara, Arabian Peninsula, and Southwest Asia. The genome of this desert-adapted species has been minimally investigated using autosomal microsatellite and mitochondrial DNA markers. In this study, the genomes of 33 dromedary camel samples from different parts of the Arabian Peninsula were sequenced using Illumina Next Generation Sequencing (NGS) platform. These data were combined with Genotyping-by-Sequencing (GBS) data from African (Sudanese) dromedaries to investigate the genomic relationship between African and Arabian Peninsula dromedary camels. Principle Component Analysis (PCA) and average genome-wide admixture analysis were be conducted on these data to tackle the objectives of these studies. Both of the two analyses conducted revealed phylogeographic distinction between these two camel populations. However, no breed-wise genetic classification has been revealed among the African (Sudanese) camel breeds. The Arabian Peninsula camel populations also show higher heterozygosity than the Sudanese camels. The results of this study explain the evolutionary history and migration of African dromedary camels from their center of domestication in the southern Arabian Peninsula. These outputs help scientists to further understand the evolutionary history of dromedary camels, which might impact in conserving the favorable genetic of this species.Keywords: dromedary, genotyping-by-sequencing, Arabian Peninsula, Sudan
Procedia PDF Downloads 205686 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences
Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu
Abstract:
Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.Keywords: nrDNA, phylogeny, taxonomy, waterlily
Procedia PDF Downloads 143685 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam
Authors: Ellen Nhedzi Gozo
Abstract:
Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management
Procedia PDF Downloads 336684 Assessing the Impact of Urbanization on Flood Risk: A Case Study
Authors: Talha Ahmed, Ishtiaq Hassan
Abstract:
Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.Keywords: urbanization, flood, flood risk, GIS
Procedia PDF Downloads 175683 A Comprehensive Review on Health Hazards and Challenges for Microbial Remediation of Persistent Organic Pollutants
Authors: Nisha Gaur, K.Narasimhulu, Pydi Setty Yelamarthy
Abstract:
Persistent organic pollutants (POPs) have become a great concern due to their toxicity, transformation and bioaccumulation property. Therefore, this review highlights the types, sources, classification health hazards and mobility of organochlorine pesticides, industrial chemicals and their by-products. Moreover, with the signing of Aarhus and Stockholm convention on POPs there is an increased demand to identify and characterise such chemicals from industries and environment which are toxic in nature or to existing biota. Due to long life, persistent nature they enter into body through food and transfer to all tropic levels of ecological unit. In addition, POPs are lipophilic in nature and accumulate in lipid-containing tissues and organs which further indicates the adverse symptoms after the threshold limit. Though, several potential enzymes are reported from various categories of microorganism and their interaction with POPs may break down the complex compounds either through biodegradation, biostimulation or bioaugmentation process, however technological advancement and human activities have also indicated to explore the possibilities for the role of genetically modified organisms and metagenomics and metabolomics. Though many studies have been done to develop low cost, effective and reliable method for detection, determination and removal of ultra-trace concentration of persistent organic pollutants (POPs) but due to insufficient knowledge and non-feasibility of technique, the safe management of POPs is still a global challenge.Keywords: persistent organic pollutants, bioaccumulation, biostimulation, microbial remediation
Procedia PDF Downloads 297682 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand
Authors: Natapol Pumipuntu
Abstract:
Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST
Procedia PDF Downloads 151681 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 128680 Modeling Taxane-Induced Peripheral Neuropathy Ex Vivo Using Patient-Derived Neurons
Authors: G. Cunningham, E. Cantor, X. Wu, F. Shen, G. Jiang, S. Philips, C. Bales, Y. Xiao, T. R. Cummins, J. C. Fehrenbacher, B. P. Schneider
Abstract:
Background: Taxane-induced peripheral neuropathy (TIPN) is the most devastating survivorship issue for patients receiving therapy. Dose reductions due to TIPN in the curative setting lead to inferior outcomes for African American patients, as prior research has shown that this group is more susceptible to developing severe neuropathy. The mechanistic underpinnings of TIPN, however, have not been entirely elucidated. While it would be appealing to use primary tissue to study the development of TIPN, procuring nerves from patients is not realistically feasible, as nerve biopsies are painful and may result in permanent damage. Therefore, our laboratory has investigated paclitaxel-induced neuronal morphological and molecular changes using an ex vivo model of human-induced pluripotent stem cell (iPSC)-derived neurons. Methods: iPSCs are undifferentiated and endlessly dividing cells that can be generated from a patient’s somatic cells, such as peripheral blood mononuclear cells (PBMCs). We successfully reprogrammed PBMCs into iPSCs using the Erythroid Progenitor Reprograming Kit (STEMCell Technologiesᵀᴹ); pluripotency was verified by flow cytometry analysis. iPSCs were then induced into neurons using a differentiation protocol that bypasses the neural progenitor stage and uses selected small-molecule modulators of key signaling pathways (SMAD, Notch, FGFR1 inhibition, and Wnt activation). Results: Flow cytometry analysis revealed expression of core pluripotency transcription factors Nanog, Oct3/4 and Sox2 in iPSCs overlaps with commercially purchased pluripotent cell line UCSD064i-20-2. Trilineage differentiation of iPSCs was confirmed with immunofluorescent imaging with germ-layer-specific markers; Sox17 and ExoA2 for ectoderm, Nestin, and Pax6 for mesoderm, and Ncam and Brachyury for endoderm. Sensory neuron markers, β-III tubulin, and Peripherin were applied to stain the cells for the maturity of iPSC-derived neurons. Patch-clamp electrophysiology and calcitonin gene-related peptide (CGRP) release data supported the functionality of the induced neurons and provided insight into the timing for which downstream assays could be performed (week 4 post-induction). We have also performed a cell viability assay and fluorescence-activated cell sorting (FACS) using four cell-surface markers (CD184, CD44, CD15, and CD24) to select a neuronal population. At least 70% of the cells were viable in the isolated neuron population. Conclusion: We have found that these iPSC-derived neurons recapitulate mature neuronal phenotypes and demonstrate functionality. Thus, this represents a patient-derived ex vivo neuronal model to investigate the molecular mechanisms of clinical TIPN.Keywords: chemotherapy, iPSC-derived neurons, peripheral neuropathy, taxane, paclitaxel
Procedia PDF Downloads 122679 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 313678 Estimating Air Particulate Matter 10 Using Satellite Data and Analyzing Its Annual Temporal Pattern over Gaza Strip, Palestine
Authors: ِAbdallah A. A. Shaheen
Abstract:
Gaza Strip faces economic and political issues such as conflict, siege and urbanization; all these have led to an increase in the air pollution over Gaza Strip. In this study, Particulate matter 10 (PM10) concentration over Gaza Strip has been estimated by Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) data, based on a multispectral algorithm. Simultaneously, in-situ measurements for the corresponding particulate are acquired for selected time period. Landsat and ground data for eleven years are used to develop the algorithm while four years data (2002, 2006, 2010 and 2014) have been used to validate the results of algorithm. The developed algorithm gives highest regression, R coefficient value i.e. 0.86; RMSE value as 9.71 µg/m³; P values as 0. Average validation of algorithm show that calculated PM10 strongly correlates with measured PM10, indicating high efficiency of algorithm for the mapping of PM10 concentration during the years 2000 to 2014. Overall results show increase in minimum, maximum and average yearly PM10 concentrations, also presents similar trend over urban area. The rate of urbanization has been evaluated by supervised classification of the Landsat image. Urban sprawl from year 2000 to 2014 results in a high concentration of PM10 in the study area.Keywords: PM10, landsat, atmospheric reflectance, Gaza strip, urbanization
Procedia PDF Downloads 252677 Land Suitability Approach as an Effort to Design a Sustainable Tourism Area in Pacet Mojokerto
Authors: Erina Wulansari, Bambang Soemardiono, Ispurwono Soemarno
Abstract:
Designing sustainable tourism area is defined as an attempt to design an area, that brings the natural environmental conditions as components are available with a wealth of social conditions and the conservation of natural and cultural heritage. To understanding tourism area in this study is not only focus on the location of the tourist object, but rather to a tourist attraction around the area, tourism objects such as the existence of residential area (settlement), a commercial area, public service area, and the natural environmental area. The principle of success in designing a sustainable tourism area is able to integrate and balance between the limited space and the variety of activities that’s always continuously to growth up. The limited space in this area of tourism needs to be managed properly to minimize the damage of environmental as a result of tourism activities hue. This research aims to identify space in this area of tourism through land suitability approach as an effort to create a sustainable design, especially in terms of ecological. This study will be used several analytical techniques to achieve the research objectives as superimposing analysis with GIS 9.3 software and Analysis Hierarchy Process. Expected outcomes are in the form of classification and criteria of usable space in designing embodiment tourism area. In addition, this study can provide input to the order of settlement patterns as part of the environment in the area of sustainable tourism.Keywords: sustainable tourism area, land suitability, limited space, environment, criteria
Procedia PDF Downloads 503676 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 73