Search results for: improving overall efficiency
8087 ICT Training Programs in Tourism and Hospitality Institutes: An Analytical Study of Types, Effectiveness, and Graduate Perceived Importance
Authors: Magdy Abdel-Aleem Abdel-Ati Mayouf, Islam Al Sayed Hussein Al Sayed
Abstract:
Development of tourism and hospitality faculties' graduates is a key to the future health of hospitality and tourism sectors. Meanwhile information and communication technologies (ICTs) increasingly become the driving engine for productivity improvement and business opportunities in tourism and hospitality industry. Tourism and hospitality education and training must address these developments to enhance the ability of future managers to adopt a variety of ICT tools and strategies to increase their organization's efficiency and competitiveness. Therefore, this study aims to explore the types and effectiveness of ICT training offered by faculties of tourism and hotels in Egypt, and evaluating the importance of that training from the graduate's point of view. The study targets the graduates who graduated in the present ten years from three different faculties of tourism and hotels. Results argued the types, levels and effectiveness of ICT training offered in these faculties and the extent to which training programs were appreciated by graduates working in different fields, and finally, it recommended particular practices to enhance the training efficiency and raising the perceived benefits of it for workers in tourism and hospitality fields.Keywords: training, IT, graduated, tourism and hospitality, education
Procedia PDF Downloads 3628086 Health Expenditure and Household Age Composition in India: Consequences for Health System Development
Authors: Milind Bharambe, Chander Shekhar
Abstract:
India is a vast country with its 1.21 billion population at the dawn of new decade, which accounts for one sixth of the global human capital in the world today. It is well known that health expenditure in India is dominated by private spending. This is an unfortunate consequence of India’s development because of large positive externality associated with health spending, which make health a merit good. This paper has used data from NSSO and Indian Government’s spending on health as reported by Ministry of Health and Family Welfare. Understanding of the dynamism of age-structure of the population would greatly optimize the expenditure on health care services. A country with good public health indicators is bound to possess good human capital which is an asset to the economic growth and indicator of development status of country. The paper tries to present the linkages between the health expenditure incurred by different states at various levels of demographic transition levels and the efficiency in utilization of health expenditure. It also looks into the way in which allocative efficiency health services can be improved. Paper tries to explore the per capita spending on health and how the demographic transition taking place in different states of India affect the required quantity and quality of health services.Keywords: age structure, demographic transition, health expenditure, morbidity
Procedia PDF Downloads 4038085 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method
Authors: Marzieh Joda, Narges Fallah, Neda Afsham
Abstract:
Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation
Procedia PDF Downloads 2218084 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation
Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza
Abstract:
The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes
Procedia PDF Downloads 4798083 Effect of vr Based Wii Fit Training on Muscle Strength, Sensory Integration Ability and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial
Authors: Ying-Yi Laio, Yea-Ru Yang, Yih-Ru Wu, Ray-Yau Wang
Abstract:
Background: Virtual reality (VR) systems are proved to increase motor performance in stroke and elderly. However, the effects have not been established in patients with Parkinson’s disease (PD). Purpose: To examine the effects of VR based training in improving muscle strength, sensory integration ability and walking abilities in patients with PD by a randomized controlled trial. Method: Thirty six participants with diagnosis of PD were randomly assigned to one of the three groups (n=12 for each group). Participants received VR-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by treadmill training for another 15 minutes for 12 sessions in 6 weeks. Participants in the control group received no structured exercise program but fall-prevention education. Outcomes included lower extremity muscle strength, sensory integration ability, walking velocity, stride length, and functional gait assessment (FGA). All outcomes were assessed at baseline, after training and at 1-month follow-up. Results: Both VRWii and TE groups showed more improvement in level walking velocity, stride length, FGA, muscle strength and vestibular system integration than control group after training and at 1-month follow-up. The VRWii training, but not the TE training, resulted in more improvement in visual system integration than the control. Conclusions: VRWii training is as beneficial as traditional exercise in improving walking abilities, sensory integration ability and muscle strength in patients with PD, and such improvements persisted at least for 1 month. The VRWii training is then suggested to be implemented in patients with PD.Keywords: virtual reality, walking, sensory integration, muscle strength, Parkinson’s disease
Procedia PDF Downloads 3298082 The Efficiency Analysis in the Health Sector: Marmara Region
Authors: Hale Kirer Silva Lecuna, Beyza Aydin
Abstract:
Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.Keywords: data envelopment analysis, efficiency, health sector, Marmara region
Procedia PDF Downloads 1308081 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 738080 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada
Authors: J. Jayasuriya
Abstract:
In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.Keywords: solar efficiency, building sustainability, PV panel, solar energy
Procedia PDF Downloads 1368079 Rotor Concepts for the Counter Flow Heat Recovery Fan
Authors: Christoph Speer
Abstract:
Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation
Procedia PDF Downloads 3558078 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures
Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk
Abstract:
INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication
Procedia PDF Downloads 178077 A Tool to Represent People Approach to the Use of Pharmaceuticals and Related Criticality and Needs: A Territory Experience
Authors: Barbara Pittau, Piergiorgio Palla, Antonio Mastino
Abstract:
Communication is fundamental to health education. The proper use of medicinal products is a crucial aspect of the health of citizens that affects both safety and health care spending. Therefore, encouraging/promoting communication, concerning the importance of proper use of pharmaceuticals, has substantial implications in terms of individual health, health care, and health care system sustainability. In view of these considerations, in the context of two projects, one of which is still in progress, a relational database-backed web application named COLLABORAFARMACISOLA has been designed and developed as a tool to analyze and visualize how people approach the use of medicinal products, with the aim of improving and enhancing communication efficacy. The software application is being used to collect information (anonymously and voluntarily) from the citizens of Sardinia, an Italian region, regarding their knowledge, experiences, and opinions towards pharmaceuticals. This study that was conducted to date on thousand of interviewed people, has focused on different aspects such as: the treatment interruption and the "self-prescription” without medical consultation, the attention paid to reading the leaflets, the awareness of the economic value of the pharmaceuticals, the importance of avoiding the waste of medicinal products and the attitudes towards the use of generics. To this purpose, our software application provides a set of ad hoc parsing routines, to store information into the structure of a relational database and to process and visualize it through a set of interactive tools aimed to emphasize the findings and the insights obtained. The results of our preliminary analysis show the efficacy of the awareness plan and, at the same time, the criticality and the needs of the territory under examination. The ultimate goal of our study is to provide a contribution to the community by improving communication that can result in a benefit for public health in a context strictly connected to the reality of the territory.Keywords: communication, pharmaceuticals, public health, relational database, tool, web application
Procedia PDF Downloads 1378076 Experimental Study on the Effectiveness of Extracurricular Football Training for Improving Primary Students Physical Fitness
Authors: Yizhi Zhang, Xiaozan Wang, Mingming Guo, Pengpeng Li
Abstract:
Introduction: The purpose of this study is to examine the effectiveness of after-school football training in improving the physical fitness of primary school students, so as to provide corresponding suggestions for carrying out after-school football training in primary schools. Methods: A total of 72 students from the experimental primary school of Mouping district, Yantai city, Shandong province, participated in this experiment. The experiment was conducted for two semesters. During the experiment period, the experimental group conducted one-hour football training after school from Monday to Thursday afternoon every week, and two hours of football training on Saturday morning every week. The control group conducted sports teaching and extracurricular activities as usual without other intervention. Before and after the experiment, both the experimental group and the control group underwent physical fitness tests according to the physical fitness test standards of Chinese students, including lung capacity, 50-meter run, one-minute skipping rope, sitting forward flexor, and one-minute sit-ups. The test results were all converted to the 100-point system according to the scoring standards. Results: (1) Before the experiment, there was no significant difference between the experimental group and the control group in various physical fitness indicators (p > 0.05). (2) After the experiment, the lung capacity score (T = 3.108, p < 0.05), the 50-meter run score (T = 6.593, p < 0.05), the skipping score (T = 9.227, p < 0.05), the sitting forward flexor score (T = 3.742, p < 0.05), and the sit-up score (T = 5.210, p < 0.05) of the experimental group were significantly higher than that of the control group. Conclusion: This study shows that the physical fitness of primary school students can be improved by football training in their spare time. It is suggested to carry out after-school football training activities in primary schools so as to effectively improve the physical fitness of pupils.Keywords: after-school football training, physical fitness, primary school students, school sports
Procedia PDF Downloads 1378075 Effect of Proteoliposome Concentration on Salt Rejection Rate of Polysulfone Membrane Prepared by Incorporation of Escherichia coli and Halomonas elongata Aquaporins
Authors: Aysenur Ozturk, Aysen Yildiz, Hilal Yilmaz, Pinar Ergenekon, Melek Ozkan
Abstract:
Water scarcity is one of the most important environmental problems of the World today. Desalination process is regarded as a promising solution to solve drinking water problem of the countries facing with water shortages. Reverse osmosis membranes are widely used for desalination processes. Nano structured biomimetic membrane production is one of the most challenging research subject for improving water filtration efficiency of the membranes and for reducing the cost of desalination processes. There are several researches in the literature on the development of novel biomimetic nanofiltration membranes by incorporation of aquaporin Z molecules. Aquaporins are cell membrane proteins that allow the passage of water molecules and reject all other dissolved solutes. They are present in cell membranes of most of the living organisms and provide high water passage capacity. In this study, GST (Glutathione S-transferas) tagged E. coli aquaporinZ and H. elongate aquaporin proteins, which were previously cloned and characterized, were purified from E. coli BL21 cells and used for fabrication of modified Polysulphone Membrane (PS). Aquaporins were incorporated on the surface of the membrane by using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipids as carrier liposomes. Aquaporin containing proteoliposomes were immobilized on the surface of the membrane with m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) rejection layer. Water flux, salt rejection and glucose rejection performances of the thin film composite membranes were tested by using Dead-End Reactor Cell. In this study, effect of proteoliposome concentration, and filtration pressure on water flux and salt rejection rate of membranes were investigated. Type of aquaporin used for membrane fabrication, flux and pressure applied for filtration were found to be important parameters affecting rejection rates. Results suggested that optimization of concentration of aquaporin carriers (proteoliposomes) on the membrane surface is necessary for fabrication of effective composite membranes used for different purposes.Keywords: aquaporins, biomimmetic membranes, desalination, water treatment
Procedia PDF Downloads 1988074 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System
Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski
Abstract:
A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater
Procedia PDF Downloads 878073 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid
Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola
Abstract:
The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel
Procedia PDF Downloads 3198072 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery
Procedia PDF Downloads 4058071 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics
Authors: Eugene Y. C. Wong
Abstract:
The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics
Procedia PDF Downloads 3748070 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine
Authors: Saim Iftikhar Awan, Farhan Ali
Abstract:
Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.Keywords: computational analysis, power efficiency, wind energy, wind turbine
Procedia PDF Downloads 1598069 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming
Authors: Sanjay Tushar Choudhary
Abstract:
This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.Keywords: current density, SOFC, suel utilization factor, recirculation ratio
Procedia PDF Downloads 5088068 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala
Authors: Jina Lee
Abstract:
Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management
Procedia PDF Downloads 1688067 Gas Injection Transport Mechanism for Shale Oil Recovery
Authors: Chinedu Ejike
Abstract:
The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing.Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reserve
Procedia PDF Downloads 1738066 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications
Authors: Najib Al-Fadhali, Huda Majid
Abstract:
In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications
Procedia PDF Downloads 848065 Sheathless, Viscoelastic Circulating Tumor Cell Separation Using Closed-Loop Microfluidics
Authors: Hyunjung Lim, Jeonghun Nam, Hyuk Choi
Abstract:
High-throughput separation is an essential technique for cancer research and diagnosis. Here, we propose a viscoelastic microfluidic device for sheathless, high-throughput isolation of circulating tumor cells (CTCs) from white blood cells. Here, we demonstrate a viscoelastic method for separation and concentration of CTCs using closed-loop microfluidics. Our device is a rectangular straight channel with a low aspect ratio. Also, to achieve high-efficiency, high-throughput processing, we used a polymer solution with low viscosity. At the inlet, CTCs and white blood cells (WBCs) were randomly injected into the microchannel. Due to the viscoelasticity-induced lateral migration to the equilibrium positions, large CTCs could be collected from the side outlet while small WBCs were removed at the center outlet. By recirculating the collected CTCs from the side outlet back to the sample reservoir, continuous separation and concentration of CTCs could be achieved with high separation efficiency (~ 99%). We believe that our device has the potential to be applied in resource-limited clinical settings.Keywords: circulating tumor cell, closed-loop microfluidics, concentration, separation, viscoelastic fluid
Procedia PDF Downloads 1538064 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach
Authors: Isara Muangthai, Lin Sue Jane
Abstract:
Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption
Procedia PDF Downloads 4828063 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology
Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai
Abstract:
In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater
Procedia PDF Downloads 3448062 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 2698061 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 488060 Competition and Cooperation of Prosumers in Cournot Games with Uncertainty
Authors: Yong-Heng Shi, Peng Hao, Bai-Chen Xie
Abstract:
Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers.Keywords: Cournot games, power market, uncertainty, prosumer cooperation
Procedia PDF Downloads 1078059 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing
Authors: Grzegorz Dolzyk, Sungmoon Jung
Abstract:
Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.Keywords: axial crushing, energy absorption, grooving, thin-wall structures
Procedia PDF Downloads 1458058 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 97