Search results for: falls detection
1959 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 721958 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 941957 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia
Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami
Abstract:
Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia
Procedia PDF Downloads 3471956 Snapchat’s Scanning Feature
Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi
Abstract:
The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.Keywords: artificial intelligence, scanning, Snapchat, machine learning
Procedia PDF Downloads 1341955 Linguistic Competencies of Students with Hearing Impairment
Authors: Munawar Malik, Muntaha Ahmad, Khalil Ullah Khan
Abstract:
Linguistic abilities in students with hearing impairment yet remain a concern for educationists. The emerging technological support and provisions in recent era vows to have addressed the situation and claims significant contribution in terms of linguistic repertoire. Being a descriptive and quantitative paradigm of study, the purpose of this research set forth was to assess linguistic competencies of students with hearing impairment in English language. The goals were further broken down to identify level of reading abilities in the subject population. The population involved students with HI studying at higher secondary level in Lahore. Simple random sampling technique was used to choose a sample of fifty students. A purposive curriculum-based assessment was designed in line with accelerated learning program by Punjab Government, to assess Linguistic competence among the sample. Further to it, an Informal Reading Inventory (IRI) corresponding to reading levels was also developed by researchers duly validated and piloted before the final use. Descriptive and inferential statistics were utilized to reach to the findings. Spearman’s correlation was used to find out relationship between degree of hearing loss, grade level, gender and type of amplification device. Independent sample t-test was used to compare means among groups. Major findings of the study revealed that students with hearing impairment exhibit significant deviation from the mean scores when compared in terms of grades, severity and amplification device. The study divulged that respective students with HI have yet failed to qualify an independent level of reading according to their grades as majority falls at frustration level of word recognition and passage comprehension. The poorer performance can be attributed to lower linguistic competence as it shows in the frustration levels of reading, writing and comprehension. The correlation analysis did reflect an improved performance grade wise, however scores could only correspond to frustration level and independent levels was never achieved. Reported achievements at instructional level of subject population may further to linguistic skills if practiced purposively.Keywords: linguistic competence, hearing impairment, reading levels, educationist
Procedia PDF Downloads 671954 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets
Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu
Abstract:
Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.Keywords: GEO SAR, radar, simulation, ship
Procedia PDF Downloads 1771953 Using Motives of Sports Consumption to Explain Team Identity: A Comparison between Football Fans across the Pond
Authors: G. Scremin, I. Y. Suh, S. Doukas
Abstract:
Spectators follow their favorite sports teams for different reasons. While some attend a sporting event simply for its entertainment value, others do so because of the personal sense of achievement and accomplishment their connection with a sports team creates. Moreover, the level of identity spectators feel toward their favorite sports team falls in a broad continuum. Some are mere spectators. For those spectators, their association to a sports team has little impact on their self-image. Others are die-hard fans who are proud of their association with their team and whose connection with that team is an important reflection of who they are. Several motives for sports consumption can be used to explain the level of spectator support in a variety of sports. Those motives can also be used to explain the variance in the identification, attachment, and loyalty spectators feel toward their favorite sports team. Motives for sports consumption can be used to discriminate the degree of identification spectators have with their favorite sports team. In this study, motives for sports consumption was used to discriminate the level of identity spectators feel toward their sports team. It was hypothesized that spectators with a strong level of team identity would report higher rates of interest in player, interest in sports, and interest in team than spectators with a low level of team identity. And spectators with a low level of team identity would report higher rates for entertainment value, bonding with friends or family, and wholesome environment. Football spectators in the United States and England were surveyed about their motives for football consumption and their level of identification with their favorite football team. To assess if the motives of sports fans differed by level of team identity and allegiance to an American or English football team, a Multivariate Analysis of Variance (MANOVA) under the General Linear Model (GLM) procedure found in SPSS was performed. The independent variables were level of team identity and allegiance to an American or English football team, and the dependent variables were the sport fan motives. A tripartite split (low, moderate, high) was used on a composite measure for team identity. Preliminary results show that effect of team identity is statistically significant (p < .001) for at least nine of the 17 motives for sports consumption assessed in this investigation. These results indicate that the motives of spectators with a strong level of team identity differ significantly from spectators with a low level of team identity. Those differences can be used to discriminate the degree of identification spectators have with their favorite sports team. Sports marketers can use these methods and results to develop identity profiles of spectators and create marketing strategies specifically designed to attract those spectators based on their unique motives for consumption and their level of team identification.Keywords: fan identification, market segmentation of sports fans, motives for sports consumption, team identity
Procedia PDF Downloads 1671952 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1121951 Identification of Bioactive Substances of Opuntia ficus-indica By-Products
Authors: N. Chougui, R. Larbat
Abstract:
The first economic importance of Opuntia ficus-indica relies on the production of edible fruits. This food transformation generates a large amount of by-products (seeds and peels) in addition to cladodes produced by the plant. Several studies showed the richness of these products with bioactive substances like phenolics that have potential applications. Indeed, phenolics have been associated with protection against oxidation and several biological activities responsible of different pathologies. Consequently, there has been a growing interest in identifying natural antioxidants from plants. This study falls within the framework of the industrial exploitation of by-products of the plant. The study aims to investigate the metabolic profile of three by-products (cladodes, peel seeds) regarding total phenolic content by liquid chromatography coupled to mass spectrometry approach (LC-MSn). The byproducts were first washed, crushed and stored at negative temperature. The total phenolic compounds were then extracted by aqueous-ethanolic solvent in order to be quantified and characterized by LC-MS. According to the results obtained, the peel extract was the richest in phenolic compounds (1512.58 mg GAE/100 g DM) followed by the cladode extract (629.23 GAE/100 g DM) and finally by the seed extract (88.82 GAE/100 g DM) which is mainly used for its oil. The LC-MS analysis revealed diversity in phenolics in the three extracts and allowed the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The highest complexity was observed in the seed phenolic composition; more than twenty compounds were detected that belong to acids esters among which three feruloyl sucrose isomers. Sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids were identified in the peel extract, whereas, only nine compounds were found in the cladode extract. It is interesting to highlight that the phenolic composition of the cladode extract was closer to that of the peel exact. However, from a quantitative viewpoint, the peel extract presented the highest amounts. Piscidic and eucomic acids were the two most concentrated molecules, corresponding to 271.3 and 121.6 mg GAE/ 100g DM respectively. The identified compounds were known to have high antioxidant and antiradical potential with the ability to inhibit lipid peroxidation and to exhibit a wide range of biological and therapeutic properties. The findings highlight the importance of using the Opuntia ficus-indica by-products.Keywords: characterization, LC-MSn analysis, Opuntia ficus-indica, phenolics
Procedia PDF Downloads 2291950 Apollo Quality Program: The Essential Framework for Implementing Patient Safety
Authors: Anupam Sibal
Abstract:
Apollo Quality Program(AQP) was launched across the Apollo Group of Hospitals to address the four patient safety areas; Safety during Clinical Handovers, Medication Safety, Surgical Safety and the six International Patient Safety Goals(IPSGs) of JCI. A measurable, online, quality dashboard covering 20 process and outcome parameters was devised for monthly monitoring. The expected outcomes were also defined and categorized into green, yellow and red ranges. An audit methodology was also devised to check the processes for the measurable dashboard. Documented clinical handovers were introduced for the first time at many locations for in-house patient transfer, nursing-handover, and physician-handover. Prototype forms using the SBAR format were made. Patient-identifiers, read-back for verbal orders, safety of high-alert medications, site marking and time-outs and falls risk-assessment were introduced for all hospitals irrespective of accreditation status. Measurement of Surgical-Site-Infection (SSI) for 30 days postoperatively, was done. All hospitals now tracked the time of administration of antimicrobial prophylaxis before surgery. Situations with high risk of retention of foreign body were delineated and precautionary measures instituted. Audit of medications prescribed in the discharge summaries was made uniform. Formularies, prescription-audits and other means for reduction of medication errors were implemented. There is a marked increase in the compliance to processes and patient safety outcomes. Compliance to read-back for verbal orders rose from 86.83% in April’11 to 96.95% in June’15, to policy for high alert medications from 87.83% to 98.82%, to use of measures to prevent wrong-site, wrong-patient, wrong procedure surgery from 85.75% to 97.66%, to hand-washing from 69.18% to 92.54%, to antimicrobial prophylaxis within one hour before incision from 79.43% to 93.46%. Percentage of patients excluded from SSI calculation due to lack of follow-up for the requisite time frame decreased from 21.25% to 10.25%. The average AQP scores for all Apollo Hospitals improved from 62 in April’11 to 87.7 in Jun’15.Keywords: clinical handovers, international patient safety goals, medication safety, surgical safety
Procedia PDF Downloads 2561949 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality
Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas
Abstract:
Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy
Procedia PDF Downloads 3251948 Encoded Nanospheres for the Fast Ratiometric Detection of Cystic Fibrosis
Authors: Iván Castelló, Georgiana Stoica, Emilio Palomares, Fernando Bravo
Abstract:
We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. The system proved to be a faster (minutes) method, with two times higher sensitivity than the state-of-the-art biomarkers based sensors for cystic fibrosis (CF), allowing the quantification of trypsin concentrations in a wide range (0-350 mg/L). Furthermore, as trypsin is directly related to the development of cystic fibrosis, different human genotypes, i.e. healthy homozygotic (> 80 mg/L), CF homozygotic (< 50 mg/L), and heterozygotic (> 50 mg/L), respectively, can be determined using our 2nanoSi nanospheres.Keywords: cystic fibrosis, trypsin, quantum dots, biomarker, homozygote, heterozygote
Procedia PDF Downloads 4831947 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 3681946 Blue Finance: A Systematical Review of the Academic Literature on Investment Streams for Marine Conservation
Authors: David Broussard
Abstract:
This review article delves into the realm of marine conservation finance, addressing the inadequacies in current financial streams from the private sector and the underutilization of existing financing mechanisms. The study emphasizes the emerging field of “blue finance”, which contributes to economic growth, improved livelihoods, and marine ecosystem health. The financial burden of marine conservation projects typically falls on philanthropists and governments, contrary to the polluter-pays principle. However, the private sector’s increasing commitment to NetZero and growing environmental and social responsibility goals prompts the need for alternative funding sources for marine conservation initiatives like marine protected areas. The article explores the potential of utilizing several financing mechanisms like carbon credits and other forms of payment for ecosystem services in the marine context, providing a solution to the lack of private funding for marine conservation. The methodology employed involves a systematic and quantitative approach, combining traditional review methods and elements of meta-analysis. A comprehensive search of the years 2000 - 2023, using relevant keywords on the Scopus platform, resulted in a review of 252 articles. The temporal evolution of blue finance studies reveals a significant increase in annual articles from 2010 to 2022, with notable peaks in 2011 and 2022. Marine Policy, Ecosystem Services, and Frontiers in Marine Science are prominent journals in this field. While the majority of articles focus on payment for ecosystem services, there is a growing awareness of the need for holistic approaches in conservation finance. Utilizing bibliometric techniques, the article showcases the dominant share of payment for ecosystem services in the literature with a focus on blue carbon. The classification of articles based on various criteria, including financing mechanisms and conservation types, aids in categorizing and understanding the diversity of research objectives and perspectives in this complex field of marine conservation finance.Keywords: biodiversity offsets, carbon credits, ecosystem services, impact investment, payment for ecosystem services
Procedia PDF Downloads 841945 Spatial Analytics of Ramayan to Geolocate Lanka
Authors: Raj Mukta Sundaram
Abstract:
The location of Ayodhya is distinctly described along river Sarayu in the epic Ramayan. On the contrary, even elaborate descriptions of Lanka and its environs are still proving elusive to human ingenuity to find a direct correlation on the ground. His-torically, there were hardly any attempts to locate Lanka, but some speculations have been made very recently, of which Sri Lanka has gained widespread public ac-ceptance for obvious reasons, such as Sri and Lanka. This belief is almost secured by the impression of Ram Setu on the satellite images, which has led the government to initiate a scientific mission to determine its age. In fact, other viewpoints believe Lanka to be somewhere far-flung along the equator, and another has long proclaimed it to be in central regions of India, but both are diminished by contemporary belief. This study emanates from the fact that Sri Lanka has no correlation to epic, and more importantly, satellite images are deceptive. So the objectives are twofold - firstly, to interpret the text from a holistic approach by analyzing the ecosystem, settlements, geological as-pects, and most importantly, the timeline of key events. Secondly, it explains the pit-falls in the rationale behind contemporary belief. At the outset, it categorically rejects the notion of Ram Setu, which, in geological terms, is merely a part of the continental shelf developed millions of years ago. It also refutes the misconception created by the word “Sri,” which is, in fact, an official name adopted by the country in the seventies with no correlation whatsoever with the events of Ramayana. Likewise, the study ar-gues for the establishment of a prosperous kingdom on a remote island with adverse climatic conditions for any civilization at that time. Eventually, the study demonstrates that travel time for the distances covered by Lord Rama does not corroborate with the description in the epic. It all leads to one conclusion that Lanka cannot be in Sri Lanka. Rather, it needs to be somewhere in the central-eastern parts of India. That region jus-tifies the environs and timelines for the journeys undertaken by Lord Rama, besides the fact that the tribes of the region show strong allegiance to Ravana. The study strongly recommends looking into the central-east region of India for the golden abode of a demon king and rejuvenating tourism of a scenic and culturally rich region hitherto marred by disturbances.Keywords: spatial analysis, Ramayan, heritage, tourism
Procedia PDF Downloads 651944 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 2471943 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection
Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten
Abstract:
Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection
Procedia PDF Downloads 3361942 Hybrid MIMO-OFDM Detection Scheme for High Performance
Authors: Young-Min Ko, Dong-Hyun Ha, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In recent years, a multi-antenna system is actively used to improve the performance of the communication. A MIMO-OFDM system can provide multiplexing gain or diversity gain. These gains are obtained in proportion to the increase of the number of antennas. In order to provide the optimal gain of the MIMO-OFDM system, various transmission and reception schemes are presented. This paper aims to propose a hybrid scheme that base station provides both diversity gain and multiplexing gain at the same time.Keywords: DFE, diversity gain, hybrid, MIMO, multiplexing gain.
Procedia PDF Downloads 6851941 Defence Ethics : A Performance Measurement Framework for the Defence Ethics Program
Authors: Allyson Dale, Max Hlywa
Abstract:
The Canadian public expects the highest moral standards from Canadian Armed Forces (CAF) members and Department of National Defence (DND) employees. The Chief, Professional Conduct and Culture (CPCC) stood up in April 2021 with the mission of ensuring that the defence culture and members’ conduct are aligned with the ethical principles and values that the organization aspires towards. The Defence Ethics Program (DEP), which stood up in 1997, is a values-based ethics program for individuals and organizations within the DND/CAF and now falls under CPCC. The DEP is divided into five key functional areas, including policy, communications, collaboration, training and education, and advice and guidance. The main focus of the DEP is to foster an ethical culture within defence so that members and organizations perform to the highest ethical standards. The measurement of organizational ethics is often complex and challenging. In order to monitor whether the DEP is achieving its intended outcomes, a performance measurement framework (PMF) was developed using the Director General Military Personnel Research and Analysis (DGMPRA) PMF development process. This evidence-based process is based on subject-matter expertise from the defence team. The goal of this presentation is to describe each stage of the DGMPRA PMF development process and to present and discuss the products of the DEP PMF (e.g., logic model). Specifically, first, a strategic framework was developed to provide a high-level overview of the strategic objectives, mission, and vision of the DEP. Next, Key Performance Questions were created based on the objectives in the strategic framework. A logic model detailing the activities, outputs (what is produced by the program activities), and intended outcomes of the program were developed to demonstrate how the program works. Finally, Key Performance Indicators were developed based on both the intended outcomes in the logic model and the Key Performance Questions in order to monitor program effectiveness. The Key Performance Indicators measure aspects of organizational ethics such as ethical conduct and decision-making, DEP collaborations, and knowledge and awareness of the Defence Ethics Code while leveraging ethics-related items from multiple DGMPRA surveys where appropriate.Keywords: defence ethics, ethical culture, organizational performance, performance measurement framework
Procedia PDF Downloads 1031940 The Development Status of Terahertz Wave and Its Prospect in Wireless Communication
Authors: Yiquan Liao, Quanhong Jiang
Abstract:
Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people.Keywords: terahertz, imaging, communication, medical treatment
Procedia PDF Downloads 991939 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 3731938 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 1191937 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 171936 The Role of Accounting and Auditing in Anti-Corruption Strategies: The Case of ECOWAS
Authors: Edna Gnomblerou
Abstract:
Given the current scale of corruption epidemic in West African economies, governments are seeking for immediate and effective measures to reduce the likelihood of the plague within the region. Generally, accountants and auditors are expected to help organizations in detecting illegal practices. However, their role in the fight against corruption is sometimes limited due to the collusive nature of corruption. The Denmark anti-corruption model shows that the implementation of additional controls over public accounts and independent efficient audits improve transparency and increase the probability of detection. This study is aimed at reviewing the existing anti-corruption policies of the Economic Commission of West African States (ECOWAS) as to observe the role attributed to accounting, auditing and other managerial practices in their anti-corruption drive. It further discusses the usefulness of accounting and auditing in helping anti-corruption commissions in controlling misconduct and increasing the perception to detect irregularities within public administration. The purpose of this initiative is to identify and assess the relevance of accounting and auditing in curbing corruption. To meet this purpose, the study was designed to answer the questions of whether accounting and auditing processes were included in the reviewed anti-corruption strategies, and if yes, whether they were effective in the detection process. A descriptive research method was adopted in examining the role of accounting and auditing in West African anti-corruption strategies. The analysis reveals that proper recognition of accounting standards and implementation of financial audits are viewed as strategic mechanisms in tackling corruption. Additionally, codes of conduct, whistle-blowing and information disclosure to the public are among the most common managerial practices used throughout anti-corruption policies to effectively and efficiently address the problem. These observations imply that sound anti-corruption strategies cannot ignore the values of including accounting and auditing processes. On one hand, this suggests that governments should employ all resources possible to improve accounting and auditing practices in the management of public sector organizations. On the other hand, governments must ensure that accounting and auditing practices are not limited to the private sector, but when properly implemented constitute crucial mechanisms to control and reduce corrupt incentives in public sector.Keywords: accounting, anti-corruption strategy, auditing, ECOWAS
Procedia PDF Downloads 2551935 Risk of Occupational Exposure to Cytotoxic Drugs: The Role of Handling Procedures of Hospital Workers
Authors: J. Silva, P. Arezes, R. Schierl, N. Costa
Abstract:
In order to study environmental contamination by cytostatic drugs in Portugal hospitals, sampling campaigns were conducted in three hospitals in 2015 (112 samples). Platinum containing drugs and fluorouracil were chosen because both were administered in high amounts. The detection limit was 0.01 pg/cm² for platinum and 0.1 pg/cm² for fluorouracil. The results show that spills occur mainly on the patient`s chair, while the most referenced occurrence is due to an inadequately closed wrapper. Day hospitals facilities were detected as having the largest number of contaminated samples and with higher levels of contamination.Keywords: cytostatic, contamination, hospital, procedures, handling
Procedia PDF Downloads 2941934 Forensic Detection of Errors Permitted by the Witnesses in Their Testimony
Authors: Lev Bertovsky
Abstract:
The purpose of this study was to determine the reasons for the formation of false testimony from witnesses and make recommendations on the recognition of such cases. During the studies, which were based on the achievements of professionals in the field of psychology, as well as personal investigative practice, the stages of perception of the information were studied, as well as the process of its reclaim from the memory and transmission to the communicator upon request. Based on the principles of the human brain, kinds of conscientious witness mistakes were systematized. Proposals were formulated for the optimization of investigative actions in cases where the witnesses make an honest mistake with respect to the effects previously observed by them.Keywords: criminology, eyewitness testimony, honest mistake, information, investigator, investigation, questioning
Procedia PDF Downloads 1851933 Clinico-Microbiological Study of S. aureus from Various Clinical Samples with Reference to Methicillin Resistant S. aureus (MRSA)
Authors: T. G. Pathrikar, A. D. Urhekar, M. P. Bansal
Abstract:
To find out S. aureus from patient samples on the basis of coagulase test. We have evaluated slide coagulase (n=46 positive), tube coagulase (n=48 positive) and DNase test (n=44, positive) , We have isolated and identified MRSA from various clinical samples and specimens by disc diffusion method determined the incidence of MRSA 50% in patients. Found out the in vitro antimicrobial susceptibility pattern of MRSA isolates and also the MIC of MRSA of oxacillin by E-Test.Keywords: cefoxitin disc diffusion MRSA detection, e – test, S. aureus devastating pathogen, tube coagulase confirmation
Procedia PDF Downloads 4911932 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection
Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt
Abstract:
Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor
Procedia PDF Downloads 1531931 Netnography Research in Leisure, Tourism, and Hospitality: Lessons from Research and Education
Authors: Marisa P. De Brito
Abstract:
The internet is affecting the way the industry operates and communicates. It is also becoming a customary means for leisure, tourism, and hospitality consumers to seek and exchange information and views on hotels, destinations events and attractions, or to develop social ties with other users. On the one hand, the internet is a rich field to conduct leisure, tourism, and hospitality research; on the other hand, however, there are few researchers formally embracing online methods of research, such as netnography. Within social sciences, netnography falls under the interpretative/ethnographic research methods umbrella. It is an adaptation of anthropological techniques such as participant and non-participant observation, used to study online interactions happening on social media platforms, such as Facebook. It is, therefore, a research method applied to the study of online communities, being the term itself a contraction of the words network (as on internet), and ethnography. It was developed in the context of marketing research in the nineties, and in the last twenty years, it has spread to other contexts such as education, psychology, or urban studies. Since netnography is not universally known, it may discourage researchers and educators from using it. This work offers guidelines for researchers wanting to apply this method in the field of leisure, tourism, and hospitality or for educators wanting to teach about it. This is done by means of a double approach: a content analysis of the literature side-by-side with educational data, on the use of netnography. The content analysis is of the incidental research using netnography in leisure, tourism, and hospitality in the last twenty years. The educational data is the author and her colleagues’ experience in coaching students throughout the process of writing a paper using primary netnographic data - from identifying the phenomenon to be studied, selecting an online community, collecting and analyzing data to writing their findings. In the end, this work puts forward, on the one hand, a research agenda, and on the other hand, an educational roadmap for those wanting to apply netnography in the field or the classroom. The educator’s roadmap will summarise what can be expected from mini-netnographies conducted by students and how to set it up. The research agenda will highlight for which issues and research questions the method is most suitable; what are the most common bottlenecks and drawbacks of the method and of its application, but also where most knowledge opportunities lay.Keywords: netnography, online research, research agenda, educator's roadmap
Procedia PDF Downloads 1821930 Assessment of Seeding and Weeding Field Robot Performance
Authors: Victor Bloch, Eerikki Kaila, Reetta Palva
Abstract:
Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.Keywords: agricultural robot, field robot, plant detection, robot performance
Procedia PDF Downloads 87