Search results for: data loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27829

Search results for: data loss

26059 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 280
26058 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 244
26057 Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time

Authors: T. R. Hidayat, G. Irawan, F. Kurniawan, E. H. I. Prasetya, Suharto, T. F. Ridwan, A. Pitoyo, A. Juniantoro, R. T. Hidayat

Abstract:

Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours.

Keywords: rubber swab, modifikasi swab, brush, fishing rubber swab, saving cost

Procedia PDF Downloads 170
26056 Human TP53 Three Dimentional (3D) Core Domain Hot Spot Mutations at Codon, 36, 72 and 240 are Associated with Oral Squamous Cell Carcinoma

Authors: Saima Saleem, Zubair Abbasi, Abdul Hameed, Mansoor Ahmed Khan, Navid Rashid Qureshi, Abid Azhar

Abstract:

Oral Squamous Cell Carcinoma (OSCC) is the leading cause of death in the developing countries like Pakistan. This problem aggravates because of the excessive use of available chewing products. In spite of widespread information on their use and purported legislations against their use the Pakistani markets are classical examples of selling chewable carcinogenic mutagens. Reported studies indicated that these products are rich in reactive oxygen species (ROS) and polyphenols. TP53 gene is involved in the suppression of tumor. It has been reported that somatic mutations caused by TP53 gene are the foundation of the cancer. This study aims to find the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco and its related ingredients. Total 260 tissues and blood specimens were collected from OSCC patients and compared with age and sex matched controls. Mutations in exons 2-11 of TP53 were examined by PCR-SSCP. Samples showing mobility shift were directly sequenced. Two mutations were found in exon 4 at nucleotide position 108 and 215 and one in exon 7 at nucleotide position 719 of the coding sequences in patient’s tumor samples. These results show that substitution of proline with arginine at codon 72 and serine with threonine at codon 240 of p53 protein. These polymorphic changes, found in tumor samples of OSCC, could be involved in loss of heterozygocity and apoptotic activity in the binding domain of TP53. The model of the mutated TP53 gene elaborated a nonfunctional unfolded p53 protein, suggesting an important role of these mutations in p53 protein inactivation and malfunction. This nonfunctional 3D model also indicates that exogenous tobacco related carcinogens may act as DNA-damaging agents affecting the structure of DNA. The interpretations could be helpful in establishing the pathways responsible for tumor formation in OSCC patients.

Keywords: TP53 mutation/polymorphism, OSCC, PCR-SSCP, direct DNA sequencing, 3D structure

Procedia PDF Downloads 369
26055 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 90
26054 Identifying the Determinants of the Shariah Non-Compliance Risk via Principal Axis Factoring

Authors: Muhammad Arzim Naim, Saiful Azhar Rosly, Mohamad Sahari Nordin

Abstract:

The objective of this study is to investigate the factors affecting the rise of Shariah non-compliance risk that can bring Islamic banks to succumb to monetary loss. Prior literatures have never analyzed such risk in details despite lots of it arguing on the validity of some Shariah compliance products. The Shariah non-compliance risk in this context is looking to the potentially failure of the facility to stand from the court test say that if the banks bring it to the court for compensation from the defaulted clients. The risk may also arise if the customers refuse to make the financing payments on the grounds of the validity of the contracts, for example, when relinquishing critical requirement of Islamic contract such as ownership, the risk that may lead the banks to suffer loss when the customer invalidate the contract through the court. The impact of Shariah non-compliance risk to Islamic banks is similar to that of legal risks faced by the conventional banks. Both resulted into monetary losses to the banks respectively. In conventional banking environment, losses can be in the forms of summons paid to the customers if they won the case. In banking environment, this normally can be in very huge amount. However, it is right to mention that for Islamic banks, the subsequent impact to them can be rigorously big because it will affect their reputation. If the customers do not perceive them to be Shariah compliant, they will take their money and bank it in other places. This paper provides new insights of risks faced by credit intensive Islamic banks by providing a new extension of knowledge with regards to the Shariah non-compliance risk by identifying its individual components that directly affecting the risk together with empirical evidences. Not limited to the Islamic banking fraternities, the regulators and policy makers should be able to use findings in this paper to evaluate the components of the Shariah non-compliance risk and make the necessary actions. The paper is written based on Malaysia’s Islamic banking practices which may not directly related to other jurisdictions. Even though the focuses of this study is directly towards to the Bay Bithaman Ajil or popularly known as BBA (i.e. sale with deferred payments) financing modality, the result from this study may be applicable to other Islamic financing vehicles.

Keywords: Islamic banking, Islamic finance, Shariah Non-compliance risk, Bay Bithaman Ajil (BBA), principal axis factoring

Procedia PDF Downloads 303
26053 Portable Environmental Parameter Monitor Based on STM32

Authors: Liang Zhao, Chongquan Zhong

Abstract:

Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.

Keywords: indoor air quality, gas concentration detection, embedded system, sensor

Procedia PDF Downloads 265
26052 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 176
26051 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field

Authors: Lina Ismail Jassim, Robiah Yunus

Abstract:

To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.

Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley

Procedia PDF Downloads 311
26050 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique

Authors: Prabha Rohatgi

Abstract:

To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.

Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ

Procedia PDF Downloads 259
26049 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 188
26048 Carbendazim Toxicity and Ameliorative Effect of Vitamin E in African Giant Rats

Authors: A. O. Omonona, T. A. Jarikre

Abstract:

Increase specialization in agriculture and use of pesticides may inadvertently cause ecosystem degradation and eventually loss of biodiversity. The populations of numerous wildlife species have undergone a precipitous decline. Many of these problems have been attributed directly to habitat loss and over exploitation resulting from unregulated pesticide uses. Carbendazim a broad spectrum benzimidazole fungicide and a metabolite of benomyl, is used to control plant disease in cereals and fruit. The effect of carbendazim exposure and the ameliorative effect of tocopherol (vitamin E) were assessed on African giant rat AGR. Hematological, biochemical and histological changes were used to determine the health condition of the animals exposed to pesticide. Sixteen AGR were stabilized, weighed and then divided into four experimental groups (A to D). Two groups were pretreated with vitamin. Group A was exposed to carbendazim only, B- carbendazim + vitamin, C- vitamin only, and D- blank (control). Packed cell volume PCV was estimated by the microhematocrit method, Leucocyte and Platelet counts were determined using the hemocytometric method. Cholinesterase (AchE) and markers of oxidative stress were quantified, and tissue changes examined microscopically. There were no behavioral changes observed in the animals, but there was a decrease in body weight and abortion after 23 days of exposure to carbendazim. There was significant differences in the packed cell volume, the hemoglobin concentration and the red blood cell counts (p < 0.05). The increases in malonyl aldehyde MDA was significant (p < 0.05) in the pesticide intoxicated rats compared to control. Vitamin E supplementation reduced MDA level significantly (p < 0.05). There was a sharp remarkable decrease in acetylcholinesterase levels in the pesticide intoxicated rats (p < 0.05). Vitamin E supplementation normalise the AchE levels comparable to that in control. Grossly, the vital organs appeared normal in the pesticide exposed and control groups except moderate pulmonary congestion. Microscopically, there was severe diffuse hepatocellular swelling in carbendazim exposed group. The severity of hepatocellular injury was reduced in the rats with vitamin E. This study ascertained the toxic effect of carbendazim and antioxidative properties of vitamins in the Africa giant rat.

Keywords: African giant rat, antioxidant, carbendazim, pesticides, toxicity

Procedia PDF Downloads 366
26047 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 483
26046 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 540
26045 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 97
26044 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 249
26043 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 410
26042 Impact of Audit Committee on Real Earnings Management: Cases of Netherlands

Authors: Sana Masmoudi Mardassi, Yosra Makni Fourati

Abstract:

Regulators highlight the importance of the Audit Committee (AC) as a key internal corporate governance mechanism. One of the most important roles of this committee is to oversee the financial reporting process. The purpose of this paper is to examine the link between the characteristics of an audit committee and the financial reporting quality by investigating whether the characteristics of audit committees are associated with improved financial reporting quality, especially the Real Earnings Management. In the current study, a panel data from 80 nonfinancial companies listed on the Amsterdam Stock Exchange during the period between 2010 and 2017 were used. To measure audit committee characteristics, four proxies have been used, specifically, audit committee independence, financial expertise, gender diversity and AC meetings. For this research, a linear regression model was used to identify the influence of a set of board characteristics of the audit committee on real earnings management after controlling for firm audit committee size, leverage, size, loss, growth and board size. This research provides empirical evidence of the association between audit committee independence, financial expertise, gender diversity and meetings and Real Earnings Management (REM) as a proxy of financial reporting quality. The study finds that independence and AC Gender diversity are strongly related to financial reporting quality. In fact, these two characteristics constrain REM. The results also suggest that AC- financial expertise reduces to some extent, the likelihood of engaging in REM. These conclusions provide support then to the audit committee requirement under the Dutch Corporate Governance Code rules regarding gender diversity and AC meetings.

Keywords: audit committee, financial expertise, independence, real earnings management

Procedia PDF Downloads 172
26041 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 467
26040 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 132
26039 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 328
26038 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 405
26037 Beating Heart Coronary Artery Bypass Grafting on Intermittent Pump Support

Authors: Sushil Kumar Singh, Vivek Tewarson, Sarvesh Kumar, Shobhit Kumar

Abstract:

Objective: ‘Beating Heart coronary artery bypass grafting on Intermittent Pump Support’ is a more reliable method of coronary revascularization that takes advantage of off and on-pump CABG while eliminating the disadvantage of both techniques. Methods: From January 2015 to December 2021, a new technique, “Intermittent On pump beating heart CABG” using a suction stabilizer was used by putting aortic and venous cannulas electively in all the patients. Patients were supported by a pump intermittently, as and when required (Group 1, n=254). Retrospective data were collected from our record of the patients who underwent off-pump CABG electively by the same surgeon and team (Group 2, n=254). Results: Significant advantage was noted in Group 1 patients in terms of the number of grafts (3.31 ± 1.16 vs. 2.30 ±0.66), grafting of lateral vessels (316 vs.202), mean operating time (1.37 ± 0.23 hrs vs. 2.22 ± 0.45 hrs) and postoperative blood loss (406.30 ± 257.90 ml vs. 567.41 ± 265.20 ml).CPB support time was less than 15 minutes in the majority of patients (n=179, 70.37 %), with a mean of 16.81 minutes. It was required, particularly during the grafting of lateral vessels. A rise in enzymes level (CRP, CKMB, Trop I, and NTPro BNP) was noted in Group 1 patients. But, these did not affect the postoperative course in patients. There was no mortality in Group 1 patients, while four patients in Group 2 died. Coclusions: Intermittent on-pump CABG technique is a promising method of surgical revascularization for all patients requiring CABG. It has shown its superiority in terms of safety, the number of grafts, operating time, and better perioperative course.

Keywords: cardiopulmonary bypass, CABG, beating heart CABG, on-pump CABG

Procedia PDF Downloads 123
26036 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 151
26035 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 61
26034 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 249
26033 Self‑reported Auditory Problems Are Associated with Adverse Mental Health Outcomes and Alcohol Misuse in the UK Armed Forces

Authors: Fred N. H. Parker, Nicola T. Fear, S. A. M. Stevelink, L. Rafferty

Abstract:

Purpose Auditory problems, such as hearing loss and tinnitus, have been associated with mental health problems and alcohol misuse in the UK general population and in the US Armed Forces; however, few studies have examined these associations within the UK Armed Forces. The present study examined the association between auditory problems and probable common mental disorders, post-traumatic stress disorder and alcohol misuse. Methods 5474 serving and ex-service personnel from the UK Armed Forces were examined, selected from those who responded to phase two (data collection 2007–09) and phase three (2014–16) of a military cohort study. Multivariable logistic regression was used to examine the association between auditory problems at phase two and mental health problems at phase three. Results 9.7% of participants reported ever experiencing hearing problems alone, 7.9% reported tinnitus within the last month alone, and 7.8% reported hearing problems with tinnitus. After adjustment, hearing problems with tinnitus at phase two was associated with increased odds of probable common mental disorders (AOR = 1.50, 95% CI 1.09–2.08), post-traumatic stress disorder (AOR = 2.30, 95% CI 1.41–3.76), and alcohol misuse (AOR = 1.94, 95% CI 1.28–2.96) at phase three. Tinnitus alone was associated with probable post-traumatic stress disorder (AOR = 1.80, 95% CI 1.03–3.15); however, hearing problems alone were not associated with any outcomes of interest. Conclusions The association between auditory problems and mental health problems emphasizes the importance of the prevention of auditory problems in the Armed Forces: through enhanced audiometric screening, improved hearing protection equipment, and greater levels of utilization of such equipment.

Keywords: armed forces, hearing problems, tinnitus, mental health, alcohol misuse

Procedia PDF Downloads 172
26032 The Aesthetic Reconstruction of Post-Burn Eyebrow Alopecia with Bilateral Superficial Temporal Artery Island Scalp Flap

Authors: Kumar Y., Suman D., Sumathi

Abstract:

Introduction: Burns to the face account for between one-fourth and one-third of all burns. The loss of an eyebrow due to a burn or infection can have negative physical and psychological consequences for patients because eyebrows have a critical functional and aesthetic role on the face. Plastic surgeons face unique challenges in reconstructing eyebrows due to their complex anatomy and variations within genders. As a general rule, there are three techniques for reconstructing the eyebrow: superficial temporal artery island flap, a composite graft from the scalp, and mini or micro follicular grafts from the scalp. In situations where a sufficient amount of subcutaneous tissue is not available and the defect is big such as the case of burns, flaps like the superficial temporal artery scalp flap remain reliable options. In 2018, a 17-year-old female patient presented to the department of Burns Plastic and reconstructive Surgery of Guru Teg Bahadur Hospital, Delhi, India. A scald-burn injury to the face occurred two years before admission, resulting in bilateral eyebrow loss. We reconstructed the bilateral eyebrows using bilateral scalp island flaps based on the posterior branch of the superficial temporal artery. The reconstructed eyebrows successfully assumed a desirable shape and exhibited a natural appearance, which was consistent with preoperative expectations and the patient stated that she was more comfortable with her social relationships. Among the current treatment procedures, the superficial temporal artery island flap continues to be a versatile option for reconstructing the eyebrows after alopecia, especially in cases of burns. Results: During the 30 days follow-up period, the scalp island flap remained vascularised with normal hair growth, without complications. The reconstructed eyebrows successfully assumed a desirable shape and exhibited a natural appearance; the patient stated that she was more comfortable with her social relationships. Conclusion: In this case report, we demonstrated how scalp island flaps pedicled by the superficial temporal artery could be performed very safely and reliably to create new eyebrows.

Keywords: alopecia, burns, eyebrow, flap, superficial temporal artery

Procedia PDF Downloads 222
26031 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 49
26030 Family Caregivers' Burden in Providing Care to the Hospitalized Elderly: Findings from Two Hospitals in Kolkata, India

Authors: Tulika Bhattacharyya, Suhita Chopra Chatterjee

Abstract:

Family caregivers are vital in providing physical and emotional care to the aged. Providing care to aged involves physical as well as psycho-socio-economic challenges, compels the caregiver to fit in manifold roles, feel overburdened; which in turn requires them to change their priorities in life. The study conducted on family caregivers of the hospitalized elderly explores caregiver’s burden using Zarit Burden Scale (ZBS). The data has been collected from two randomly selected Multispecialty Hospitals in Kolkata (India), after obtaining ethical clearance from the Institutional Review Board of both the hospitals. The predictors of burden were also assessed using interview schedules. Among fifty-seven caregivers who participated in the study, caregiver’s burden was identified among thirty respondents with twenty-six having mild to moderate burden and four having moderate to severe burden. Majority of the caregivers were found to be female, reflecting the gendered nature of caregiving. Family caregivers spent more than six hours per day on caregiving, which severely disturbed their work-life including loss of job. The study revealed that the caregivers’ marital status, family structure, academic qualification, occupation and time spent on caregiving are related to family caregivers’ burden. The burden of care giving was accentuated by poor access to information, counseling, and lack of supportive services. The paper concludes by indicating the need for greater state interventions for caregivers.

Keywords: caregivers burden, family caregiving, hospitalized elderly, elderly in Kolkata, India, Zarit Burden Scale

Procedia PDF Downloads 255