Search results for: vehicle perception system
19961 Effects of Corporate Social Responsibility on Individual Investors’ Judgment on Investment Risk: Experimental Evidence from China
Authors: Huayun Zhai, Quan Hu, Wei-Chih Chiang, Jianjun Du
Abstract:
By applying experimental methodology in the framework of the behavior-perception theory, this paper studies the relationship between information quality of corporates’ social responsibility (CSR) and individual investors’ risk perception, intermediated with individual investors’ perception on CSR. The findings are as follows: In general, the information quality of CSR significantly influences individual investors’ perception on investment risks. Furthermore, certification on CSR can help reinforce such perceptions. The higher the reporting quality of CSR is, accompanied by the certification by an independent third party, the more likely individual investors recognize the responsibilities. The research also found that the perception on CSR not only plays a role of intermediation between information quality about CSR and investors’ perception on investment risk but also intermediates the certification of CSR reports and individual investors’ judgment on investment risks. The main contributions of the research are in two folds. The first is that it supplements the research on CSR from the perspective of investors’ perceptions. The second is that the research provides theoretical and experimental evidence for enterprises to implement and improve reports on their social responsibilities.Keywords: information quality, corporate social responsibility, report certification, individual investors’ perception on risk, perception of corporate social responsibility
Procedia PDF Downloads 7419960 Smart Side View Mirror Camera for Real Time System
Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi
Abstract:
In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.Keywords: camera calibration, ego-motion, Kalman filters, object tracking, real time systems
Procedia PDF Downloads 22819959 Perception of Young Consumers about SMS Marketing in Pakistan
Authors: Raja Irfan Sabir, Nargis Dewan
Abstract:
This study examines the role of SMS marketing on perception of young consumers and its impact on society by keeping in mind the culture, values and communication norms of Pakistan. The study focused on the consumer’s perception towards SMS Marketing of Entertainment, Informativeness, Credibility and Irritation factor which can have influence on the perception of young consumer positively or negatively. It’s also observed that some of the message contents do have good or bad impact on the society’s norm. The result derived from a sample of 200 consumers indicate that communication medium ‘SMS marketing’ positively influence the consumers perception but the messages that consumers receive from these companies are against the social norms and have bad impact. So Pakistani entrepreneurs of cellular industries should be more aware that there is need to somehow modify their message content strategies according to culture, norms and values of our society and environmental situation.Keywords: SMS marketing, messages content, consumers’ perception, cultural values and norms
Procedia PDF Downloads 39519958 Cargo Securement Standards and Braking Maneuvers
Authors: Jose A. Romero, Frank Otremba, Alejandro A. Lozano-Guzman
Abstract:
Road safety is affected by many factors, involving the vehicle, the infrastructure, and the environment. Many efforts have been thus made to improve road safety through rational standards for the different systems involved in freight transportation. Cargo shifting and falling have been recognized as critical and contributive effects for road crashes. To avoid such situations, regional and international standards have been implemented, aiming to prevent such types of cargo-related accidents. In particular, there are specific compulsory standard requirements to maintain the cargo on the vehicle without shifting, when the vehicle performs an emergency braking maneuver. In this paper, a simulation is presented to analyze the effect of the vibration of the cargo on the braking distance of the vehicle. Such vibration can lead to a poor cargo restraining, and higher braking efficiency, as a result of the decoupling of the cargo mass from the vehicle mass. Such higher braking efficiency, on the order of 4.4%, further suggests a greater demand for the current braking standards.Keywords: road safety, cargo securement, shifting cargo, vehicle dynamics, ABS
Procedia PDF Downloads 16619957 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring
Authors: Mamoon Masud, Suleman Mazhar
Abstract:
Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking
Procedia PDF Downloads 14719956 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation
Authors: Michael C. Barbecho, Romeo B. Morcilla
Abstract:
This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.Keywords: electric vehicle, solar vehicles, front drive, solar, solar power
Procedia PDF Downloads 57119955 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control
Procedia PDF Downloads 38419954 Third Language Perception of English Initial Plosives by Mandarin-Japanese Bilinguals
Authors: Rika Aoki
Abstract:
The aim of this paper is to investigate whether being bilinguals facilitates or impedes the perception of a third language. The present study conducted a perception experiment in which Mandarin-Japanese bilinguals categorized a Voice-Onset-Time (VOT) continuum into English /b/ or /p/. The results show that early bilinguals were influenced by both Mandarin and Japanese, while late bilinguals behaved in a similar manner to Mandarin monolinguals Thus, it can be concluded that in the present study having two languages did not help bilinguals to perceive L3 stop contrast native-likely.Keywords: bilinguals, perception, third language acquisition, voice-onset-time
Procedia PDF Downloads 29219953 Design and Control of a Brake-by-Wire System Using a Permanent Magnet Synchronous Motor
Authors: Daniel S. Gamba, Marc Sánchez, Javier Pérez, Juan J. Castillo, Juan A. Cabrera
Abstract:
The conventional hydraulic braking system operates through the activation of a master cylinder and solenoid valves that distribute and regulate brake fluid flow, adjusting the pressure at each wheel to prevent locking during sudden braking. However, in recent years, there has been a significant increase in the integration of electronic units into various vehicle control systems. In this context, one of the technologies most recently researched is the Brake-by-wire system, which combines electronic, hydraulic, and mechanical technologies to manage braking. This proposal introduces the design and control of a Brake-by-wire system, which will be part of a fully electric and teleoperated vehicle. This vehicle will have independent four-wheel drive, braking, and steering systems. The vehicle will be operated by embedded controllers programmed into a Speedgoat test system, which allows programming through Simulink and real-time capabilities. The braking system comprises all mechanical and electrical components, a vehicle control unit (VCU), and an electronic control unit (ECU). The mechanical and electrical components include a permanent magnet synchronous motor from Odrive and its inverter, the mechanical transmission system responsible for converting torque into pressure, and the hydraulic system that transmits this pressure to the brake caliper. The VCU is responsible for controlling the pressure and communicates with the other components through the CAN protocol, minimizing response times. The ECU, in turn, transmits the information obtained by a sensor installed in the caliper to the central computer, enabling the control loop to continuously regulate pressure by controlling the motor's speed and current. To achieve this, tree controllers are used, operating in a nested configuration for effective control. Since the computer allows programming in Simulink, a digital model of the braking system has been developed in Simscape, which makes it possible to reproduce different operating conditions, faithfully simulate the performance of alternative brake control systems, and compare the results with data obtained in various real tests. These tests involve evaluating the system's response to sinusoidal and square wave inputs at different frequencies, with the results compared to those obtained from conventional braking systems.Keywords: braking, CAN protocol, permanent magnet motor, pressure control
Procedia PDF Downloads 1919952 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components
Authors: Najeh Lakhoua
Abstract:
Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture
Procedia PDF Downloads 20419951 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software
Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan
Abstract:
Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine
Procedia PDF Downloads 39119950 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles
Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong
Abstract:
A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test
Procedia PDF Downloads 40219949 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.Keywords: energy efficient, drag force, chassis, powertrain
Procedia PDF Downloads 33519948 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System
Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba
Abstract:
This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control
Procedia PDF Downloads 16519947 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.Keywords: numerical study, air dam, flow field, pressure distribution
Procedia PDF Downloads 20519946 Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine
Authors: Khaled A. Alsaif, Mosaad A. Foda
Abstract:
In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented.Keywords: unmanned aerial vehicle (UAV), quadrotor, petrol quadcopter, flying robot
Procedia PDF Downloads 45119945 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor
Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan
Abstract:
The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management
Procedia PDF Downloads 24419944 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 30419943 Impact of Charging PHEV at Different Penetration Levels on Power System Network
Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat
Abstract:
Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile
Procedia PDF Downloads 28719942 Establishment of Standardized Bill of Material for Korean Urban Rail Transit System
Authors: J. E. Jung, J. M. Yang, J. W. Kim
Abstract:
The railway market across the world has been standardized with the globalization strategy of Europe. On the other hand, the Korean urban railway system is operated by 10 operators which have established their standards and independently managed BOMs. When operators manage different BOMs, lack of system compatibility prevents them from sharing information and hinders work linkage and efficiency. Europe launched a large-scale railway project in 1993 when the European Union went into effect. In particular, the recent standardization efforts of the EU-funded MODTRAIN project are similar to the approach of the urban rail system standardization research that is underway in Korea. This paper looks into the BOMs of Koran urban rail transit operators and suggests the standard BOM for the rail transit system in Korea by reviewing rail vehicle technologies and the MODTRAIN project of Europe. The standard BOM is structured up to the key device level or module level, and it allows vehicle manufacturers and component manufacturers to manage their lower-level BOMs and share them with each other and with operators.Keywords: BOM, Korean rail, urban rail, standardized
Procedia PDF Downloads 31319941 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 42119940 Transition 1970 Volkswagen Beetle from Internal Combustion Engine Vehicle to Electric Vehicle, Modeling and Simulation
Authors: Jamil Khalil Izraqi
Abstract:
This paper investigates the transition of a 1970 Volkswagen Beetle from an internal combustion engine (ICE) to an EV using Matlab/Simulink modeling and simulation. The performance of the EV drivetrain system was simulated under various operating conditions, including standard and custom driving cycles in Turkey and Jordan (Amman), respectively. The results of this paper indicate that the transition is viable and that modeling and simulation can help in understanding the performance and efficiency of the electric drivetrain system, including battery pack, power electronics, and brushless direct current (BLDC) Motor.Keywords: BLDC, buck-boost, inverter, SOC, drive-cycle
Procedia PDF Downloads 10119939 Assessing Mobile Robotic Telepresence Based On Measures of Social Telepresence
Authors: A. Bagherzadhalimi, E. Di Maria
Abstract:
The feedbacks obtained regarding the sense of presence from pilot users operating a Mobile Robotic presence (MRP) system to visit a simulated museum are reported in this paper. The aim is to investigate how much the perception of system’s usefulness and ease of use is affected by operators’ sense of social telepresence (presence) in the remote location. Therefore, scenarios of visiting a museum are simulated and the user operators are supposed to perform some regular tasks inside the remote environment including interaction with local users, navigation and visiting the artworks. Participants were divided into two groups, those who had previous experience of operation and interaction with a MRP system and those who never had experience. Based on the results, both groups provided different feedbacks. Moreover, there was a significant association between user’s sense of presence and their perception of system usefulness and ease of use.Keywords: mobile robotic telepresence, museum, social telepresence, usability test
Procedia PDF Downloads 40019938 Construction Quality Perception of Construction Professionals and Their Expectations from a Quality Improvement Technique in Pakistan
Authors: Muhammad Yousaf Sadiq
Abstract:
The complexity arises in defining the construction quality due to its perception, based on inherent market conditions and their requirements, the diversified stakeholders itself and their desired output. An quantitative survey based approach was adopted in this constructive study. A questionnaire-based survey was conducted for the assessment of construction Quality perception and expectations in the context of quality improvement technique. The survey feedback of professionals of the leading construction organizations/companies of Pakistan construction industry were analyzed. The financial capacity, organizational structure, and construction experience of the construction firms formed basis for their selection. The quality perception was found to be project-scope-oriented and considered as an excess cost for a construction project. Any quality improvement technique was expected to maximize the profit for the employer, by improving the productivity in a construction project. The study is beneficial for the construction professionals to assess the prevailing construction quality perception and the expectations from implementation of any quality improvement technique in construction projects.Keywords: construction quality, expectation, improvement, perception
Procedia PDF Downloads 47519937 Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles
Authors: Changgil Lee, Jooyoung Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information.Keywords: bridge weigh-in-motion (BWIM) system, driving conditions, precision analysis model, the number of axle, the speed of vehicle
Procedia PDF Downloads 46819936 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 13519935 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking
Authors: Soheib Fergani
Abstract:
This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation
Procedia PDF Downloads 6519934 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 21319933 A Study on the Method of Accelerated Life Test to Electric Rotating System
Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim
Abstract:
This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration
Procedia PDF Downloads 32619932 Underwater Remotely Operated Vehicle (ROV) Exploration
Authors: M. S. Sukumar
Abstract:
Our objective is to develop a full-fledged system for exploring and studying nature of fossils and to extend this to underwater archaeology and mineral mapping. This includes aerial surveying, imaging techniques, artefact extraction and spectrum analysing techniques. These techniques help in regular monitoring of fossils and also the sensing system. The ROV was designed to complete several tasks which simulate collecting data and samples. Given the time constraints, the ROV was engineered for efficiency and speed in performing tasks. Its other major design consideration was modularity, allowing the team to distribute the building process, to easily test systems as they were completed and troubleshoot and replace systems as necessary. Our design itself had several challenges of on-board waterproofed sensor mounting, waterproofing of motors, ROV stability criteria, camera mounting and hydrophone sound acquisition.Keywords: remotely operated vehicle (ROV) dragonair, underwater archaeology, full-fledged system, aerial imaging and detection
Procedia PDF Downloads 237