Search results for: variant selection
2479 Portfolio Selection with Constraints on Trading Frequency
Authors: Min Dai, Hong Liu, Shuaijie Qian
Abstract:
We study a portfolio selection problem of an investor who faces constraints on rebalancing frequency, which is common in pension fund investment. We formulate it as a multiple optimal stopping problem and utilize the dynamic programming principle. By numerically solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation, we find a series of free boundaries characterizing optimal strategy, and the constraints significantly impact the optimal strategy. Even in the absence of transaction costs, there is a no-trading region, depending on the number of the remaining trading chances. We also find that the equivalent wealth loss caused by the constraints is large. In conclusion, our model clarifies the impact of the constraints on transaction frequency on the optimal strategy.Keywords: portfolio selection, rebalancing frequency, optimal strategy, free boundary, optimal stopping
Procedia PDF Downloads 882478 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 1632477 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection
Procedia PDF Downloads 4462476 Usability Evaluation in Practice: Selecting the Appropriate Method
Authors: Hanan Hayat, Russell Lock
Abstract:
The importance of usability in ensuring software quality has been well established in literature and widely accepted by software development practitioners. Consequently, numerous usability evaluation methods have been developed. However, the availability of large variety of evaluation methods alongside insufficient studies that critically analyse them resulted in an ambiguous process of selection amongst non-usability-expert practitioners. This study investigates the factors affecting the selection of usability evaluation methods within a project by interviewing a software development team. The results of the data gathered are then analysed and integrated in developing a framework. The framework developed poses a solution to the selection processes of usability evaluation methods by adjusting to individual projects resources and goals. It has the potential to be further evaluated to verify its applicability and usability within the domain of this study.Keywords: usability evaluation, evaluating usability in non-user entered designs, usability evaluation methods (UEM), usability evaluation in projects
Procedia PDF Downloads 1582475 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5662474 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 1442473 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research
Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón
Abstract:
Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish
Procedia PDF Downloads 942472 Clothing and Personnel Selection: An Experimental Study to Test the Effects of Dress Style on Hirability Perceptions
Authors: Janneke K. Oostrom, Richard Ronay
Abstract:
The so called “red sneakers effect” refers to people’s inclination to infer status and competence from signals of nonconformity. In the current research, we explore an untested possible boundary condition to the red sneakers effect within the context of personnel selection. In two experimental studies (total N = 156), we examined how (non)conforming dress style interacts with the quality of a job applicant’s resume to determine hirability perceptions. We found that dress style indeed impacts hirability perceptions, but that the exact impact depends on the quality of the applicant’s resume. Results revealed that applicants with a low quality resume were punished for behaving in a nonconforming way, whereas applicants with a high quality resume appeared to have the leeway to dress as they please. Importantly, the observed interaction effect was mediated by perceptions of power. These findings suggest that nonconforming dress acts as a power-signaling mechanism in the context of personnel selection. However, the signaling effects of non-conforming dress style can backfire when accompanied by evidence that such posturing is not matched by cues of actual competence.Keywords: clothing, hirability, nonconformity, personnel selection, power
Procedia PDF Downloads 1782471 Nest-Site Selection of Crested Lark (Galerida cristata) in Yazd Province, Iran
Authors: Shirin Aghanajafizadeh
Abstract:
Nest site selection of Crested Lark was investigated in Boroyeh wildlife sanctuary of Harat during spring 2014. Habitat variables such as number of plant species, soil texture, distance to the nearest water resources, farms and roads were compared in the species presence plots with absence ones. Our analysis showed that the average number of Zygophyllum atriplicoidesand, Artemisia sieberi were higher while fine-textured soil percent cover (with very little and gravel) was lower in species presence plots than control plots. We resulted that the most affecting factor in the species nest site selection is the number of Z .atriplicoides and soil texture. Z. atriplicoides and A. sieberi can provide cover for nests and chickens against predators and environmental harsh events such as sunshine and wind. The stability of built nest forces the birds to select sites with not fine-textured soil. Some of the nests were detected in Alfalfa farms that can be related to its cover producing capability.Keywords: habitat selection, Yazd Province, presence and absence plots, habitat variables
Procedia PDF Downloads 1862470 Vendor Selection and Supply Quotas Determination by Using Revised Weighting Method and Multi-Objective Programming Methods
Authors: Tunjo Perič, Marin Fatović
Abstract:
In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology is tested on the example of flour purchase for a bakery with two decision makers.Keywords: cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection
Procedia PDF Downloads 3582469 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods
Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen
Abstract:
Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.Keywords: accommodation establishments, human resource management, multi-objective optimization on the basis of ratio analysis, multi-criteria decision making, step-wise weight assessment ratio analysis
Procedia PDF Downloads 3432468 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.Keywords: green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting
Procedia PDF Downloads 3282467 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models
Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini
Abstract:
The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion
Procedia PDF Downloads 1402466 The Role of Virtual Group Anonymity in the Generation, Selection, and Refinement of Ideas
Authors: Jonali Baruah, Keesha Green
Abstract:
This experimental study examines the effects of anonymity in video meeting groups across the stages of innovation (idea generation, selection, and refinement) on various measures of creativity. A sample of 92 undergraduate students participated in small groups of three to four members to complete creativity, decision-making, and idea-refinement task in either anonymous or identified conditions. The study followed two anonymity (anonymous and identified) X 3 stages of innovation (idea generation, idea selection, and idea refinement) in a mixed factorial design. Results revealed that the anonymous groups produced ideas of the highest average quality in the refinement phase of innovation. The results of this study enhanced our understanding of the productivity and creativity of groups in computer-mediated communication.Keywords: creativity, anonymity, idea-generation, idea-refinement, innovation
Procedia PDF Downloads 1372465 Surface Display of Lipase on Yarrowia lipolytica Cells
Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova
Abstract:
Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst
Procedia PDF Downloads 4832464 Different Motor Inhibition Processes in Action Selection Stage: A Study with Spatial Stroop Paradigm
Authors: German Galvez-Garcia, Javier Albayay, Javiera Peña, Marta Lavin, George A. Michael
Abstract:
The aim of this research was to investigate whether the selection of the actions needs different inhibition processes during the response selection stage. In Experiment 1, we compared the magnitude of the Spatial Stroop effect, which occurs in response selection stage, in two motor actions (lifting vs reaching) when the participants performed both actions in the same block or in different blocks (mixed block vs. pure blocks).Within pure blocks, we obtained faster latencies when lifting actions were performed, but no differences in the magnitude of the Spatial Stroop effect were observed. Within mixed block, we obtained faster latencies as well as bigger-magnitude for Spatial Stroop effect when reaching actions were performed. We concluded that when no action selection is required (the pure blocks condition), inhibition works as a unitary system, whereas in the mixed block condition, where action selection is required, different inhibitory processes take place within a common processing stage. In Experiment 2, we investigated this common processing stage in depth by limiting participants’ available resources, requiring them to engage in a concurrent auditory task within a mixed block condition. The Spatial Stroop effect interacted with Movement as it did in Experiment 1, but it did not significantly interact with available resources (Auditory task x Spatial Stroop effect x Movement interaction). Thus, we concluded that available resources are distributed equally to both inhibition processes; this reinforces the likelihood of there being a common processing stage in which the different inhibitory processes take place.Keywords: inhibition process, motor processes, selective inhibition, dual task
Procedia PDF Downloads 3922463 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree
Procedia PDF Downloads 4082462 Identification of Two Novel Carbapenemase Gene Variants from a Carbapenem-Resistant Aeromonas Veronii Environmental Isolate
Authors: Rafael Estrada, Cristian Ruiz Rueda
Abstract:
Carbapenems are last-resort antibiotics used in clinical settings to treat antibiotic-resistant bacterial infections. Thus, the emergence and spread of resistance to carbapenems is a major public health concern. Here, we have studied a carbapenem-resistant Aeromonas veronii strain previously isolated from a water sample from Sam Simeon Creek (Hearst San Simeon State Park, CA). Analysis of this isolate using disk-diffusion, CarbaNP, eCIM and mCIM assays revealed that it was resistant to amoxicillin-clavulanic acid and all carbapenems tested and that this isolate produced a potentially novel carbapenemase of the Metallo-β-lactamase family. Whole genome sequencing analysis revealed that this A. veronii isolate carries a novel variant of the blacₚₕₐ class β-carbapenemase gene that was closely related to the blacₚₕₐ₇ gene of Aeromonas jandaei. This isolate also carried a novel variant of the blaₒₓₐ class D carbapenemase gene that was most closely related to the blaₒₓₐ-₉₁₂ gene found in other Aeromonas veronii isolates. Finally, we also identified a novel class C β-lactamase gene moderately related to the blaFₒₓ-₁₇ gene of Providencia stuartii and other blaFₒₓ variants identified in Klebsiella pneumoniae, Escherichia coli and other Enterobacteriaceae. Overall, our findings reveal that environmental isolates are an important reservoir of multiple carbapenemases and other β-lactamases of clinical significance.Keywords: β-lactamases, carbapenem, antibiotic-resistant, aeromonas veronii
Procedia PDF Downloads 922461 A Multidimensional Genetic Algorithm Applicable for Our VRP Variant Dealing with the Problems of Infrastructure Defaults SVRDP-CMTW: “Safety Vehicle Routing Diagnosis Problem with Control and Modified Time Windows”
Authors: Ben Mansour Mouin, Elloumi Abdelkarim
Abstract:
We will discuss the problem of routing a fleet of different vehicles from a central depot to different types of infrastructure-defaults with dynamic maintenance requests, modified time windows, and control of default maintained. For this reason, we propose a modified metaheuristicto to solve our mathematical model. SVRDP-CMTW is a variant VRP of an optimal vehicle plan that facilitates the maintenance task of different types of infrastructure-defaults. This task will be monitored after the maintenance, based on its priorities, the degree of danger associated with each default, and the neighborhood at the black-spots. We will present, in this paper, a multidimensional genetic algorithm “MGA” by detailing its characteristics, proposed mechanisms, and roles in our work. The coding of this algorithm represents the necessary parameters that characterize each infrastructure-default with the objective of minimizing a combination of cost, distance and maintenance times while satisfying the priority levels of the most urgent defaults. The developed algorithm will allow the dynamic integration of newly detected defaults at the execution time. This result will be displayed in our programmed interactive system at the routing time. This multidimensional genetic algorithm replaces N genetic algorithm to solve P different type problems of infrastructure defaults (instead of N algorithm for P problem we can solve in one multidimensional algorithm simultaneously who can solve all these problemsatonce).Keywords: mathematical model, VRP, multidimensional genetic algorithm, metaheuristics
Procedia PDF Downloads 1962460 Corpus-Based Model of Key Concepts Selection for the Master English Language Course "Government Relations"
Authors: Elena Pozdnyakova
Abstract:
“Government Relations” is a field of knowledge presently taught at the majority of universities around the globe. English as the default language can become the language of teaching since the issues discussed are both global and national in character. However for this field of knowledge key concepts and their word representations in English don’t often coincide with those in other languages. International master’s degree students abroad as well as students, taught the course in English at their national universities, are exposed to difficulties, connected with correct conceptualizing of terminology of GR in British and American academic traditions. The study was carried out during the GR English language course elaboration (pilot research: 2013 -2015) at Moscow State Institute of Foreign Relations (University), Russian Federation. Within this period, English language instructors designed and elaborated the three-semester course of GR. Methodologically the course design was based on elaboration model with the special focus on conceptual elaboration sequence and theoretical elaboration sequence. The course designers faced difficulties in concept selection and theoretical elaboration sequence. To improve the results and eliminate the problems with concept selection, a new, corpus-based approach was worked out. The computer-based tool WordSmith 6.0 was used with the aim to build a model of key concept selection. The corpus of GR English texts consisted of 1 million words (the study corpus). The approach was based on measuring effect size, i.e. the percent difference of the frequency of a word in the study corpus when compared to that in the reference corpus. The results obtained proved significant improvement in the process of concept selection. The corpus-based model also facilitated theoretical elaboration of teaching materials.Keywords: corpus-based study, English as the default language, key concepts, measuring effect size, model of key concept selection
Procedia PDF Downloads 3062459 Contractor Selection by Using Analytical Network Process
Authors: Badr A. Al-Jehani
Abstract:
Nowadays, contractor selection is a critical activity of the project owner. Selecting the right contractor is essential to the project manager for the success of the project, and this cab happens by using the proper selecting method. Traditionally, the contractor is being selected based on his offered bid price. This approach focuses only on the price factor and forgetting other essential factors for the success of the project. In this research paper, the Analytic Network Process (ANP) method is used as a decision tool model to select the most appropriate contractor. This decision-making method can help the clients who work in the construction industry to identify contractors who are capable of delivering satisfactory outcomes. Moreover, this research paper provides a case study of selecting the proper contractor among three contractors by using ANP method. The case study identifies and computes the relative weight of the eight criteria and eleven sub-criteria using a questionnaire.Keywords: contractor selection, project management, decision-making, bidding
Procedia PDF Downloads 882458 Optimal Site Selection for Temporary Housing regarding Disaster Management Case Study: Tehran Municipality (No.6)
Authors: Ghazaleh Monazami Tehrani, Zhamak Monazami Tehrani, Raziyeh Hadavand
Abstract:
Optimal site selection for temporary housing is one of the most important issues in crisis management. In this research, district six of Tehran city with high frequency and geographical distribution of earthquakes has been selected as a case study for positioning temporary housing after a probable earthquake. For achieving this goal this study tries to identify and evaluate distribution of location according to some standards such as compatible and incompatible urban land uses with utility of GIS and AHP. The results of this study show the most susceptible parts of this region in the center. According to the maps, north eastern part of Kordestan, Shaheed Gomnam intersection possesses the highest pixels value in terms of areal extent, therefore these places are recommended as an optimum site location for construction of emergency evacuation base.Keywords: optimal site selection, temporary housing , crisis management, AHP, GIS
Procedia PDF Downloads 2572457 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision
Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha
Abstract:
Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR
Procedia PDF Downloads 1562456 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 1562455 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.Keywords: band selection, fuzzy c-means, k-means, hyperspectral image
Procedia PDF Downloads 4082454 A Variant of Newton's Method with Free Second-Order Derivative
Authors: Young Hee Geum
Abstract:
In this paper, we present the iterative method and determine the control parameters to converge cubically for solving nonlinear equations. In addition, we derive the asymptotic error constant.Keywords: asymptotic error constant, iterative method, multiple root, root-finding, order of convergent
Procedia PDF Downloads 2942453 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction
Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras
Abstract:
In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion
Procedia PDF Downloads 1992452 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The NFL Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if this data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.Keywords: national football league, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP
Procedia PDF Downloads 852451 Evaluation and Selection of SaaS Product Based on User Preferences
Authors: Boussoualim Nacira, Aklouf Youcef
Abstract:
Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)
Procedia PDF Downloads 4832450 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C
Authors: Keaghan Brown
Abstract:
The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase
Procedia PDF Downloads 77