Search results for: number plate extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12555

Search results for: number plate extraction

12405 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants

Authors: F. Hassaine-Sadi, S. Chelouaou

Abstract:

In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.

Keywords: synergistic extraction, lead, copper, environment

Procedia PDF Downloads 440
12404 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 441
12403 First Approach on Lycopene Extraction Using Limonene

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced.

Keywords: alternative solvent, d-limonene, extraction, lycopene

Procedia PDF Downloads 407
12402 Extraction of Natural Colorant from the Flowers of Flame of Forest Using Ultrasound

Authors: Sunny Arora, Meghal A. Desai

Abstract:

An impetus towards green consumerism and implementation of sustainable techniques, consumption of natural products and utilization of environment friendly techniques have gained accelerated acceptance. Butein, a natural colorant, has many medicinal properties apart from its use in dyeing industries. Extraction of butein from the flowers of flame of forest was carried out using ultrasonication bath. Solid loading (2-6 g), extraction time (30-50 min), volume of solvent (30-50 mL) and types of solvent (methanol, ethanol and water) have been studied to maximize the yield of butein using the Taguchi method. The highest yield of butein 4.67% (w/w) was obtained using 4 g of plant material, 40 min of extraction time and 30 mL volume of methanol as a solvent. The present method provided a greater reduction in extraction time compared to the conventional method of extraction. Hence, the outcome of the present investigation could further be utilized to develop the method at a higher scale.

Keywords: butein, flowers of Flame of the Forest, Taguchi method, ultrasonic bath

Procedia PDF Downloads 472
12401 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors

Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li

Abstract:

Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.

Keywords: cross v-shape, performance, solar air collector, thermal efficiency

Procedia PDF Downloads 305
12400 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 535
12399 Optimum of Offshore Structures Lifting Padeyes Using Finite Element Method

Authors: Abdelrahim Hamadelnil

Abstract:

Padeye design and analysis plays important roles during the lifting, load out and installation of heavy structures. This paper explains the disadvantages of limiting the effective thickness of the cheek plate to 75% of the main plate thickness. In addition, a sensitivity study about the impact of the out of plane force on the padeye design is discussed. This study also explains the fabrication requirements to ensure that the designed strength is achieved. The objective of this study is to elaborate and discuss the philosophy of padeye design and to propose the suitable effective cheek plate thickness to be considered in the analysis of padeye. A finite element analysis using London University Structure Analysis System (LUSAS), is conducted and compared with the hand calculation. The benefits and advantage of using FE analysis is addressed in this paper. At the end of this paper, a guideline elaborating the philosophy of the design of the padeye is developed and the suitable effective thickness of cheek plate to be considered in the design is recommended. In addition, a comparison between the finite element result and the hand calculation using beam theory is discussed as well.

Keywords: cheek plate, effective thickness, out of plane force, Padeye

Procedia PDF Downloads 323
12398 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 291
12397 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: non-linear vibrations, annular plates, large amplitudes, functionally graded material

Procedia PDF Downloads 360
12396 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: vacuum, thermal, flat-plate solar collector, insulation

Procedia PDF Downloads 389
12395 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 108
12394 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods

Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul

Abstract:

Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.

Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction

Procedia PDF Downloads 231
12393 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory

Procedia PDF Downloads 275
12392 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 98
12391 A 3D Eight Nodes Brick Finite Element Based on the Strain Approach

Authors: L. Belounar, K. Gerraiche, C. Rebiai, S. Benmebarek

Abstract:

This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

Keywords: brick element, strain approach, plate bending, civil engineering

Procedia PDF Downloads 486
12390 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: optimization, gravitational search algorithm, genetic algorithm, honeycomb plate

Procedia PDF Downloads 373
12389 Study of Heat Exchangers in Small Modular Reactors

Authors: Harish Aryal, Roger Hague, Daniel Sotelo, Felipe Astete Salinas

Abstract:

This paper presents a comparative study of different coolants, materials, and temperatures that can affect the effectiveness of heat exchangers that are used in small modular reactors. The corrugated plate heat exchangers were chosen out of different plate options for testing purposes because of their ease of access and better performance than other existing heat exchangers in recent years. SolidWorks enables us to see various results between water coolants and helium coolants acting upon different types of conducting metals, which were selected from different fluids that ultimately satisfied accessibility requirements and were compatible with the software. Though not every element, material, fluid, or method was used in the testing phase, their purpose is to help further research that is to come since the innovation of nuclear power is the future. The tests that were performed are to help better understand the constant necessities that are seen in heat exchangers and through every adjustment see what the breaking points or improvements in the machine are. Depending on consumers and researchers, the results may give further feedback as to show why different types of materials and fluids would be preferred and why it is necessary to keep failures to improve future research.

Keywords: heat exchangers, Solidworks, coolants, small modular reactors, nuclear power, nanofluids, Nusselt number, friction factor, Reynolds number

Procedia PDF Downloads 69
12388 A Stable Method for Determination of the Number of Independent Components

Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor

Abstract:

Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.

Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock

Procedia PDF Downloads 94
12387 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate

Authors: R. Kiš, M. Malcho, M. Janovcová

Abstract:

This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.

Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis

Procedia PDF Downloads 374
12386 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: actuator, nozzle, microejector, piezoelectric

Procedia PDF Downloads 422
12385 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 345
12384 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing

Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji

Abstract:

The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.

Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure

Procedia PDF Downloads 474
12383 A Unique Exact Approach to Handle a Time-Delayed State-Space System: The Extraction of Juice Process

Authors: Mohamed T. Faheem Saidahmed, Ahmed M. Attiya Ibrahim, Basma GH. Elkilany

Abstract:

This paper discusses the application of Time Delay Control (TDC) compensation technique in the juice extraction process in a sugar mill. The objective is to improve the control performance of the process and increase extraction efficiency. The paper presents the mathematical model of the juice extraction process and the design of the TDC compensation controller. Simulation results show that the TDC compensation technique can effectively suppress the time delay effect in the process and improve control performance. The extraction efficiency is also significantly increased with the application of the TDC compensation technique. The proposed approach provides a practical solution for improving the juice extraction process in sugar mills using MATLAB Processes.

Keywords: time delay control (TDC), exact and unique state space model, delay compensation, Smith predictor.

Procedia PDF Downloads 85
12382 Etude 3D Quantum Numerical Simulation of Performance in the HEMT

Authors: A. Boursali, A. Guen-Bouazza

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 347
12381 Numerical Analysis Of Stainless Steel Beam To Column Joints With Bolted Flush End Plates

Authors: Takwiir Tahriim Khan, Tausif Khalid, Mohammad Redwan Ahamed, Md Soebur Rahman

Abstract:

The mutual connection in joints has a significant impact on the safe and cost-effective design of steel structures. Generally, the end plates are welded at the end of the beam and columns are bolted with the end plates. Thus, the moment will be transferred at the interface, which is a critical segment at the connection. 3-D Finite Element Models (FEM) has been developed using ABAQUS 2017 software to predict the yield capacity of the end plate connections. The parameters used in this study are the depth, width, and thickness of the end plate, dimensions of the bolt, sectional and material properties of beams and columns. The influence width, depth, and thicknesses of the end plate connection on yield capacity were investigated through parametric studies. The results showed that, for increasing plate thickness from 0.3 inch to 0.8 inch by an increment of 0.1 inch the yield capacity increased by 2.85% on average, for decreasing the end plate depth from 13 inch to 11 inch the yield capacity increased by 25.4 %, and for decreasing the end plate width from 6.5 inch to 5.75 inch the yield capacity increased by 35.4%. Variation in yield capacity was also found by changing the beam and column section. Besides, the numerical results showed a good agreement with published experimental literature with an average variation of less than 8.3 % in yield capacity. So the study allows for a more effective combination of beam, column, and end plate dimensions.

Keywords: steel beam-column joints, finite element analysis, yield moment capacity, parametric study, ABAQUS, bolted joints, flush end plates, moment vs rotation curves

Procedia PDF Downloads 105
12380 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks

Authors: Dibu Dave Mbako, Bin Cheng

Abstract:

This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.

Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution

Procedia PDF Downloads 217
12379 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 131
12378 3D Quantum Simulation of a HEMT Device Performance

Authors: Z. Kourdi, B. Bouazza, M. Khaouani, A. Guen-Bouazza, Z. Djennati, A. Boursali

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, Silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 472
12377 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 472
12376 Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC

Authors: Tao Chen, ShiHua Liu, JiWei Zhang

Abstract:

Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly.

Keywords: bipolar plate, deformation, finite element simulation, fuel cell, locking bolt

Procedia PDF Downloads 410