Search results for: nitrogen deficiency
1311 Assessing a New Industrial Growth Media for the Development of Algae Technology in the Kingdom of Saudi Arabia
Authors: Zain Alammari, Emna M. Mhedhbi, Claudio G. Grunewald
Abstract:
This study aims to compare a standard F2 media to a local media called Altakamul. The new media was tested in Nannochloropsissp cultures at a lab scale. The main difference between both media is the Nitrogen source (NaNO3 in F/2 and NH4 in Altakamul). According to the preliminary results during three weeks experiments, no significant differences were found between F2 and Alatakamul media in terms of Nannochloropsis growth. We can anticipate that Altakamul media will be the cheapest media option for microalgae cultivation at a higher scale, reducing the OPEXKeywords: microalgae, nannochloropsis, culture, nitrogen
Procedia PDF Downloads 1621310 Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2
Authors: Ratanaporn Leesing, Thidarat Papone, Mutiyaporn Puangbut
Abstract:
Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production.Keywords: mixotrophic cultivation, microalgal lipid, Chlorella sp. KKU-S2
Procedia PDF Downloads 3401309 Need for a National Newborn Screening Programme in India: Pilot Study Data
Authors: Sudheer Moorkoth, Leslie Edward Lewis, Pragna Rao
Abstract:
Newborn screening (NBS) is a part of routine newborn care in many countries worldwide to detect early any rare treatable conditions and inborn errors of metabolism (IEM). India has not started this program yet. In an attempt to understand the challenges in implementing a national newborn screening program in India, we initiated a pilot newborn screening project funded by the Government of Canada. Along with initiating the newborn screening at Kasturba Hospital, Manipal in South India, for screening six disorders (Congenital Hypothyroidism(CH), Congenital Adrenal Hyperplasia (CAH), Galactosemia, Biotinidase deficiency, Glucose-6-Phosphate Dehydrogenase deficiency (G-6PD) and Phenylketonurea), we also studied the awareness of various stakeholders on the newborn screening. In a period of nine months from August 2017 to March 2018 we could screen 1915 newborns (999 male and 916 female). The result showed that there were seven babies screened positive. This interim result points to an incidence rate of 1 in 270 children for these rare disorders collectively. This includes three confirmed cases of CH, two cases of G-6PD deficiency, and one case each for Galctosemia and CAH. A questionnaire based study to understand the awareness among various stakeholders revealed that there is little awareness among parents, adolescents and anganwadi workers (public health worker). The interim data points to the need for a national newborn screening programme in India. There is also an immediate need to undertake large-scale awareness programme to create knowledge on NBS among the various stakeholders.Keywords: awareness, inborn errors of metabolism (IEM), newborn screening, rare disease
Procedia PDF Downloads 2491308 Effect of Nitrogen Gaseous Plasma on Cotton Fabric Dyed with Reactive Yellow105
Authors: Mohammad Mirjalili, Hamid Akbarpour
Abstract:
In this work, a bleached well cotton sample was dyed with reactive yellow105 dye and subsequently, the dyed sample was exposed to the plasma condition containing Nitrogen gas at 1 and 5 minutes of plasma exposure time, respectively. The effect of plasma on surface morphology fabric was studied by Scanning Electronic Microscope (SEM). CIELab, K/S, and %R of samples (treated and untreated samples) were measured by a reflective spectrophotometer, and consequently, the experiments show that the sample dyed with Reactive yellow 105 after being washed, with the increase in the operation time of plasma, its dye fastness decreases. In addition, the increase in plasma operation time at constant pressure would increase the destructing effect on the surface morphology of samples dyed with reactive yellow105.Keywords: cotton fabric, nitrogen cold plasma, reflective spectrophotometer, scanning electronic microscope (SEM), reactive yellow105 dye
Procedia PDF Downloads 2561307 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment
Authors: Lina Wu
Abstract:
The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification
Procedia PDF Downloads 501306 Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management
Authors: Ebrahim Izadi-Darbandi
Abstract:
In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements.Keywords: competition, wheat yield, fertilizer management, biomass
Procedia PDF Downloads 3681305 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology
Authors: Tatsuhiko Aizawa, Hiroshi Morita
Abstract:
The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch
Procedia PDF Downloads 881304 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Properties of Lowland Rice
Authors: D. A. S. Gamage, B. F. A. Basnayake, W.A.J.M. De Costa
Abstract:
Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. The application of inorganic fertilizer has become a burden to the country. The excessive application of organic and inorganic fertilizers can potentially lead to deterioration of the quality of water. In mixing both urea and rice husk charcoal and rice straw compost in soils causes a slow release of nitrogen fertilizer, thus reducing the cost of importations of nitrogen based fertilizers per unit area of cultivation. Objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N,P, K, organic matter in soil and yield of rice production. Five treatments were used for twenty pots (pot size 30 cm diameter and 45 cm height) each replicated four times as: inorganic fertilizer only (Urea, TSP and MOP) (Treatment 1); rice husk charcoal coated urea, TSP and MOP (Treatment 2); inorganic fertilizer (Urea, TSP and MOP) with rice straw compost only (Treatment 3); rice husk charcoal urea, TSP and MOP with rice straw compost (Treatment 4); and no fertilizer as the control (Treatment 5). Rice grain yield was significantly higher in treatment 4 where rice husk charcoal coated urea, TSP and MOP with rice straw compost. The lowest yield was observed in control (treatment 5). The lower the value of the nitrogen to phosphorous ratio in soil, it indicates higher uptake of phosphorous. Charcoal can be used as a soil amendment and organic fertilizer, but adjustment of pH was required at high application rates. K content of soil of treatment 3 and 4 were the highest with compared to the treatment 1. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer.Keywords: charcoal, rice husk, nitrogen to phosphorous ratio, soil amendment
Procedia PDF Downloads 3081303 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir
Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh
Abstract:
The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO
Procedia PDF Downloads 3561302 Pontine and Lobar Hemorrhage from Venous Infarction secondary to Cerebral Venous Thrombosis in a 70-year old Filipina with Protein S Deficiency: A Case Report
Authors: Michelangelo Liban, Debbie Liquete
Abstract:
A 70-year-old right-handed Filipina was seen by the Neurology service due to a new onset headache, bi-occipital in location, dull squeezing in character with a pain score of 8/10 with associated nausea and one episode of non-projectile, which provided no relief. Due to the alarming features of the headache despite the absence of risk factors and an essentially normal neurologic examination, a cranial CTA+CTV was done, which revealed a small left frontal and small right pontine hyper density with minimal perilesional edema. Findings also revealed filling defects in the straight and right transverse sinus and a consideration of hypoplastic left transverse sinus with no definite evidence of aneurysm nor A-V malformation. She had normal levels of D-Dimer, Protein C, ANA and Anti-DS DNA but had a low Protein S of 56% (N.V is 70-120%). Antithrombin, homocysteine and Factor V Leiden were not done due to unavailability of the tests. She was then treated as a case of Cerebral Venous Thrombosis with multiple hemorrhage from venous infraction and was given anticoagulants which provided relief of the headache. She did not manifest with any further cortical, bulbar or sensorimotor deficits hence was discharged improved after 15 hospital days. To our knowledge, there are no case reports of patients with CVT from Protein S deficiency and venous anomaly that presented with multiple hemorrhage from venous infarction, more so affecting the brainstem. In this paper, a rare location of CVT in a newly diagnosed Protein S deficient patient is presented together with an uneventful course and favorable outcome.Keywords: protein S deficiency, cerebral venous thrombosis, pontine hemorrhage from venous infarction, elderly
Procedia PDF Downloads 751301 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water
Authors: Chao Ding, Jun Shi, Huiping Deng
Abstract:
This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan
Procedia PDF Downloads 3451300 Effect of the Endotracheal Care Nursing Guideline Utilization on the Incidence of Endotracheal Tube Displacement, Oxygen Deficiency after Extubation, Re-intubation, and Nurses Satisfaction
Authors: Rabeab Khunpukdee, Aranya Sukchoui, Nonluk Somgit, Chitima Bunnaul
Abstract:
Endotracheal displacement is a major risk of life threatening among critically ill patients. Standard nursing protocol is needed to minimize this risk and to improve clinical outcomes. To evaluate the effectiveness of the endothacheal care nursing guideline. The incidence rates of endochacheal displacement, oxygen deficiency after extubation, re-intubation, and nurse’s satisfaction on the utilization of the endotracheal care nursing guideline. An evidence-based nursing practice framework was used to develop the endotracheal care nursing guideline. The guideline valid content was review by a 3 panel of experts. The index of item objective (IOC) of the guideline was 0.93. The guideline was implemented in 130 patients (guideline group) and 19 registered nurses at a medicine ward, Had Yai hospital, Thailand. Patient’s outcomes were evaluated by comparison with those 155 patients who received the routine nursing care (routine care group). Descriptive statistics, frequency, percentage, mean, standard deviation and Mann Whitney U-test was analyzed using the computer program. All significantly and better outcomes were found in the guideline group compared to the routine care group. The guideline group has less incidence rates of endotracheal displacement (1.54 % vs 9.03 %, p < 0.05), and none of the guideline group had oxygen deficiency after extubation (0 % vs 83.33%) compared to the routine care group. All of the 2 patients in the guideline group, compared to 6 of 14 patients in the routine care group were re-intubation. The overall rate of re-intubation in the total group (n = 130 vs 155) was seen less in the guideline group than the routine care group (1.54 % vs 3.87). Overall, nurses satisfaction was at high-level (89.50%) on the utilization of the guideline.Keywords: endotracheal care, nursing guideline, re-intubation, satisfaction
Procedia PDF Downloads 5121299 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms
Procedia PDF Downloads 3521298 Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize
Authors: A. B. Alarape, O. D. Aba
Abstract:
The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize.Keywords: agroforestry trees, fertilizer, growth, incorporation, leafy biomass
Procedia PDF Downloads 1911297 Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition
Authors: J. Singh, Swati Dubey, R. P. Singh
Abstract:
Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production.Keywords: biofuel, GC-MS, LC-MS, lipid, microalgae
Procedia PDF Downloads 3701296 Evaluation of Coagulation State in Patients with End Stage Renal Disease (ESRD) by Thromboelastogram (TEG)
Authors: Mohammad Javad Esmaeili
Abstract:
Background: Coagulopathy is one of the complications with end stage renal disease with high prevalence in the world. Thromboelastogram is adynamic test for evaluation of coagulopathy and we have compared our patient's coagulation profiles with the results of TEG. Material and methods: In this study 50 patients with ESRD who were on regular hemodialysis for at least 6 months was selected with simple sampling and their coagulation profile was done with blood sampling and also TEG was done for every patient. Data were analyzed with SPSS and P<0.05 consider significant. Results: Protein s, Protein c and Antithrombin III deficiency was detected in 32%, 16% and 20% of patients and activated protein c resistance was abnormal in 2% of patients. In TEG, R time in 49% and K in 22/5% of patients was lower than normal and a-angle in 26% and maximum amplitude in 36% of patients was upper than normal (Hypercoagulable state). PS with R and ATIII with K have correlation. Conclusion: R time and K in TEG can be a suitable screening test in patients with suspicious to PS and ATIII deficiency.Keywords: thromboelastography, chronic kidney disease, Coagulating disorder, hemodialysis
Procedia PDF Downloads 761295 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.Keywords: aquaculture effluent, phytoremediation, pollutant, water hyacinth
Procedia PDF Downloads 2731294 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia
Authors: Yu-Jen Shih, Juan-Zhang Lou
Abstract:
Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate
Procedia PDF Downloads 631293 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane
Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina
Abstract:
This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature
Procedia PDF Downloads 3231292 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots
Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau
Abstract:
Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence
Procedia PDF Downloads 6331291 The Response to Various Planting Conditions of Thein Corn Inbred Lines
Authors: K. Boonlertnirun, C. Rawdsiri, R. Suvannasara, S. Boonlertnirun
Abstract:
Thein corn variety well adapted to several planting conditions is usually accepted by most farmers. The objectives of this work were to evaluate yield potential of Thein corn inbred line grown in various nitrogen rates and plant conditions for selecting good inbred lines to be germ plasm for further breeding program. Split plot design with three replications was utilized as experimental design, three planting conditions: normal (control), low nitrogen, and high plant density condition, and sixteen inbred lines of Thein corn were used as main and subplot respectively. The results showed that no interaction between inbred line and planting condition in terms of yield. Correlation between planting conditions based on yield of inbred line was positive at medium level. Thein corn inbreds, namely L7, L5, L16, and L14 lines were tolerant to low nitrogen condition because they could produce high yield under all planting conditions and they were selected to be germ plasm for further breeding program.Keywords: inbred line, planting condition, Thein corn, planting conditions
Procedia PDF Downloads 3721290 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture
Procedia PDF Downloads 1841289 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 1261288 Circular Nitrogen Removal, Recovery and Reuse Technologies
Authors: Lina Wu
Abstract:
The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction
Procedia PDF Downloads 391287 The Measurements of Nitrogen Dioxide Pollution in Street Canyons
Authors: Aukse Miskinyte, Audrius Dedele
Abstract:
The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon
Procedia PDF Downloads 2721286 Digestibility in Yankasa Rams Fed Brachiaria ruziziensis – Centrosema pascuorum Hay Mixtures with Concentrate
Authors: Ibrahim Sani, J. T. Amodu, M. R. Hassan, R. J. Tanko, N. Adamu
Abstract:
This study investigated the digestibility of Brachiaria ruziziensis and Centrosema pascuorum hay mixtures at varying proportions in Yankasa rams. Twelve Yankasa rams with average initial weight 10.25 ± 0.1 kg were assigned to three dietary treatments of B. ruziziensis and C. pascuorum hay at different mixtures (75BR:25CP, 50BR:50CP and 25BR:75CP, respectively) in a Completely Randomized Design (CRD) for a period of 14 days. Concentrate diet was given to the experimental animals as supplement at fixed proportion, while the forage mixture (basal diet) was fed at 3% body weight. Animals on 50BR:50CP had better nutrient digestibility (crude protein, acid and neutral detergent fibre, ether extract and nitrogen free extract) than other treatment diets, except in dry matter digestibility (87.35%) which compared with 87.54% obtained in 25BR:75CP treatment diet and also organic matter digestibility. All parameters taken on nitrogen balance with the exception of nitrogen retained were significantly higher (P < 0.05) in animals fed 25BR:75CP diet, but were statistically similar with values obtained for animals on 50BR:50CP diet. From results obtained in this study, it is concluded that mixture of 25%BR75%CP gave the best nutrient digestibility and nitrogen balance in Yankasa rams. It is therefore recommended that B. ruziziensis and C. pascuorum should be fed at 50:50 mixture ratio for enhanced animal growth and performance in Nigeria.Keywords: B. ruziziensis, C. pascuorum, digestibilty, rams, Yankasa
Procedia PDF Downloads 1291285 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst
Authors: Totsaporn Suwannaruang, Kitirote Wantala
Abstract:
The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation
Procedia PDF Downloads 1571284 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental
Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle
Abstract:
In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental
Procedia PDF Downloads 5231283 Hereditary Angioedema: Case Presentation and Review of Anaesthetic Implications
Authors: Joshua Chew, Vesa Cheng, David Thomson
Abstract:
Background: Hereditary angioedema (HAE) or C1 esterase deficiency is a relatively rare entity that has a potential for significant anesthetic complications. Methods: A literature review was performed of published cases of surgery in patients with HAE. Results were limited to English language only and cases were examined for management strategies and successful prevention of acute attacks. Results: The literature revealed the successful use of C1 esterase inhibitors as the most common agent in surgical prophylaxis therapy. Other therapeutic targets described included kallikrein inhibitors and bradykinin B2 receptor antagonists. Conclusions: Therapeutic targets that exist for the management of acute attacks in HAE have been successfully employed in the setting of surgery. The data is currently limited and could not be used as a firm evidence base, but the limited outcomes seen are positive and reassuring for the prospective anesthetic management of this potentially fatal condition.Keywords: anesthesia, C1 esterase deficiency, hereditary angioedema, surgical prophylaxis
Procedia PDF Downloads 4041282 The Relationship between Level of Anxiety and the Development of Children with Growth Hormone Deficiency
Authors: Ewa Mojs, Katarzyna Wiechec, Maia Kubiak, Wlodzimierz Samborski
Abstract:
Interactions between mother’s psychological condition and child’s health status are complex and derive from the nature of the mother-child relationship. The aim of the study was to analyze the issue of anxiety amongst mothers of short children in the aspect of growth hormone therapy. The study was based on a group of 101 mothers of originally short-statured children – 70 with growth hormone deficiency (GHD) treated with recombinant human growth hormone (rhGH) and 31 undergoing the diagnostic process, without any treatment. Collected medical data included child's gender, height and weight, chronological age, bone age delay, and rhGH therapy duration. For all children, the height SDS and BMI SDS were calculated. To evaluate anxiety in mothers, the Spielberger State-Trait Anxiety Inventory (STAI) was used. Obtained results revealed low trait anxiety levels, with no statistically significant differences between the groups. State anxiety levels were average when mothers of all children were analyzed together, but when divided into groups, statistical differences appeared. Mothers of children without diagnosis and treatment had significantly higher levels of state anxiety than mothers of children with GHD receiving appropriate therapy. These results show, that the occurrence of growth failure in children is not related to high maternal trait anxiety, but the lack of diagnosis and lack of appropriate treatment generates higher levels of maternal state anxiety than the process of rh GH therapy in the offspring. Commencement of growth hormone therapy induce a substantial reduction of the state anxiety in mothers, and the duration of treatment causes its further decrease.Keywords: anxiety, development, growth hormone deficiency, motherhood
Procedia PDF Downloads 281