Search results for: metals to polymers joining
1905 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia
Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye
Abstract:
The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.Keywords: bioaccumulation, catfish, essential metals, nile tilapia
Procedia PDF Downloads 781904 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta
Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added
Abstract:
Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates
Procedia PDF Downloads 2021903 Assessment of Some Heavy Metals (Manganese, Copper, Nickel and Zinc) in Muscle and Liver of the African Catfish (Clarias gariepinus) in Ilushi River, Nigeria
Authors: Joshua I. Izegaegbe, Femi F. Oloye, Catherine E. Nasiru
Abstract:
This study determined the level of manganese, zinc, copper, and nickel in the liver and muscle of the African Catfish, Clarias gariepinus from Ilushi River, Edo State, Nigeria with a view to determining the extent of contamination. Heavy metal determination of digested fish samples was done using the atomic absorption spectrophotometric method. The results show that the muscles and livers were contaminated to varying levels with the presence of some non-metallic elements. The heavy metal load revealed that zinc had the highest mean concentration of 0.217±0.008µg/g in liver and 0.130±0.006µg/g in muscle, while copper recorded the least concentration in liver 0.063±0.004µg/g and 0.027±0.003µg/gin muscle. The distribution of the heavy metals in the muscles and livers of Clarias gariepinus showed significant variations and the results also revealed that the concentration of heavy metals (Zn, Cu,Ni and Mn) found in the liver was higher than those found in the muscle. This indicates that the liver is a better accumulator of heavy metal in Clarias gariepinus than the muscles. On comparison with WHO/FAO/FEPA/USFDA standards, the study shows that the concentrations of heavy metals in liver and muscle were within permissible limits safe for human consumption.Keywords: clarias gariepinus, heavy metals, liver, muscle
Procedia PDF Downloads 2181902 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan
Authors: Fawad Ali
Abstract:
Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer
Procedia PDF Downloads 701901 Comparative Analysis of Some Mineral Profile of Honey Marketed and Consumed in Some of the States in Northern Part of Nigeria
Authors: R. Odoh, M. S. Dauda, E. A. Kamba, N. C. Igwemmar
Abstract:
Honey and honey trade is an important economic activity for many tropical rural and urban areas worldwide. In West Africa and other part of the world, honey and honey products holds high socio–cultural, religious, medicinal, and traditional values. Therefore, to maximize benefits or to enhance profit, a variety of components are added to the raw, fresh and unprocessed honey, introducing the possibility of heavy metals contaminants. Therefore the honey sold in various places, markets and shops in some states in Northern Nigeria (Benue, Nassarawa and Taraba) including Abuja FCT, in Nigeria was analyzed to determine the level of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). All the honey samples contain heavy metals. The results ranged from 0.028–0.070, 0.023–0.058, 0.042–0.092, 4.231–8.589, 8.115–14.892, 0.078–0.922, 0.044–0.092, 0.041–0.087 and 18.234–28.654 μg/L for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn respectively. The mean concentration (μg/L) of the heavy metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn of the regularly marketed honey is significantly higher than the mean concentration observed in raw, fresh and unprocessed honey. However, continued consumption of honey with high heavy metal content might lead to exposure to chronic heavy metal poisoning.Keywords: honey, health, mineral profile adulteration, contamination
Procedia PDF Downloads 3211900 Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria
Authors: E. D. Paul, F. G. Okibe, C. E. Gimba, S. Yakubu
Abstract:
Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed.Keywords: ground water, water quality, heavy metals, Atomic Absorption Spectrometry (AAS)
Procedia PDF Downloads 5331899 Comparative Analysis of Some Mineral Profile of Honey Marketed and Consumed in Some of the States in Northern Part of Country, Nigeria
Authors: R. Odoh, M. S. Dauda, E. A. Kamba, N. C. Igwemmar
Abstract:
Honey and honey trade is an important economic activity for many tropical rural and urban areas worldwide. In West Africa and other part of the world, honey and honey products holds high socio–cultural, religious, medicinal and traditional values. Therefore, to maximize benefits or to enhance profit, a variety of components are added to the raw, fresh and unprocessed honey, introducing the possibility of heavy metals contaminants. Therefore the honey sold in various places, markets and shops in some states in Northern Nigeria (Benue, Nassarawa and Taraba) including Abuja FCT, in Nigeria was analyzed to determine the level of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). All the honey samples contain heavy metals. The results ranged from 0.028–0.070, 0.023–0.058, 0.042–0.092, 4.231–8.589, 8.115–14.892, 0.078–0.922, 0.044–0.092, 0.041–0.087 and 18.234–28.654 μg/L for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The mean concentration (μg/L) of the heavy metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn of the regularly marketed honey is significantly higher than the mean concentration observed in raw, fresh and unprocessed honey. However, continued consumption of honey with high heavy metal content might lead to exposure to chronic heavy metal poisoning.Keywords: honey, health, mineral profile adulteration, contamination
Procedia PDF Downloads 4251898 Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil
Authors: Nasreen Jeelani, Huining Shi , Di An, Lu Xia, Shuqing An
Abstract:
Heavy metals contamination in aquatic ecosystem is a major environmental problem since its accumulation along the food chain pose public health risk. The concentration of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in soil and plants species collected from different streams of Suoxu River, China was investigated. This aim was to define the level of pollutants in Suoxu River, find which plant species exhibits the greatest accumulation and to evaluate whether these species could be useful for phytoremediation. While total soil Cd, Cr, Cu, Ni, Pb, and Zn concentrations varied, respectively, from 0.09 to 0.23 , 58.6 to 98, 9.72 to 80.5, 15.3 to 41, 15.2 to 27.3 and 35 to 156 (mg-kg-1), those in plants ranged from 0.035 to 0.49, 2.91 to 75.6, 4.79 to 32.4, 1.27 to 16.1, 0.62 to10.2, 18.9 to 84.6 (mg-kg-1), respectively. Based on BCFs and TFs values, most of the studied species have potential for phytostabilization. The plants with most effective in the accumulation of metals in shoots are Phragmatis australis (TF=2.29) and Iris tectorum (TF =2.07) for Pb. While Chenopodium album, (BCF =3.55), Ranunculus sceleratus, (BCF= 3.0), Polygonum hydropiper (BCF =2.46) for Cd and Iris tectorum (BCF=2.0) for Cu was suitable for phytostabilization. Among the plant species screened for Cd, Cr, Cu, Ni, Pb and Zn, most of the species were efficient to take up more than one heavy metal in roots. Our study showed that the native plant species growing on contaminated sites may have the potential uses for phytoremediation.Keywords: heavy metals, huaihe river catchments, sediment, plants
Procedia PDF Downloads 3591897 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee
Abstract:
In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation
Procedia PDF Downloads 5211896 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule
Authors: David Nieto Simavilla, Wilco M. H. Verbeeten
Abstract:
The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity
Procedia PDF Downloads 1821895 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals
Authors: Kanouni Fares
Abstract:
This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition
Procedia PDF Downloads 1211894 Investigation on the Changes in the Chemical Composition and Ecological State of Soils Contaminated with Heavy Metals
Authors: Metodi Mladenov
Abstract:
Heavy metals contamination of soils is a big problem mainly as a result of industrial production. From this point of view, this is of interests the processes for decontamination of soils for crop of production with low content of heavy metals and suitable for consumption from the animals and the peoples. In the current article, there are presented data for established changes in chemical composition and ecological state on soils contaminated from non-ferrous metallurgy manufacturing, for seven years time period. There was done investigation on alteration of pH, conductivity and contain of the next elements: As, Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn and Al. Also, there was done visual observations under the processes of recovery of root-inhabitable soil layer and reforestation. Obtained data show friendly changes for the investigated indicators pH and conductivity and decreasing of content of some form analyzed elements. Visual observations show augmentation of plant cover areas and change in species structure with increase of number of shrubby and wood specimens.Keywords: conductivity, contamination of soils, chemical composition, inductively coupled plasma–optical emission spectrometry, heavy metals, visual observation
Procedia PDF Downloads 1791893 Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids
Authors: Md. Shoffikul Islam, Hongqing Hu
Abstract:
Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil.Keywords: biochar, immobilization, low molecular weight organic acids, trace elements contaminated soil
Procedia PDF Downloads 821892 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy
Authors: A. M. Khourshid, I. Sabry
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure
Procedia PDF Downloads 4621891 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches
Authors: Baljinder Singh, Navneet Sharma
Abstract:
The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl
Procedia PDF Downloads 3221890 Microstructure Study of NanoCrystalline Cellulose Obtained from Cotton Linter
Authors: Farid Amidi-Fazli
Abstract:
Problems and disadvantages of using conventional plastics are more apparent in recent years and have attracted researchers' attention. Polymers from natural resources or bio polymers represent a suitable replacement to overcome to the disadvantages of plastics. But due to the some flaws of bio polymers, using suitable filler almost seems necessary. Nanocrystalline cellulose with low cost and availability can be applied as appropriate filler. In this study nanocrystalline cellulose was produced from cotton Linter and was characterized. The cotton Linter was hydrolyzed in sulfuric acid then neutralized by the two different concentrations of NaOH. The resulted suspension was treated by ultrasound waves. Process efficiency was determined as 90%. The final product was studied using scanning electron microscopy and x-ray diffraction technique. The obtained diagram of XRD experiment confirmed that the produced material was nanocrystalline cellulose. Also percentage of crystallinity was calculated as 84% in the obtained material as well as the size of crystals. It can be said that the applied method is a rapid and easy method for the production of nanocrystalline cellulose.Keywords: nanocrystalline cellulose, crystallinity, XRD, cotton linter
Procedia PDF Downloads 5101889 The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation
Authors: Brandtner-Hafner Martin
Abstract:
Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased.Keywords: fiber-modified adhesives, bonding safety, GF-principle, fracture analysis
Procedia PDF Downloads 1731888 Determination of Proximate, Mineral, and Heavy Metal Contents of Fish from the Lower River Niger at Agenebode, Edo State, Nigeria
Authors: Agbugui M. O., Inobeme A.
Abstract:
Fish constitutes a vital component of human diets due to their rich nutritional compositions. They serve as a remarkable source of proteins, vitamins, and fatty acids, which are indispensable for the effective growth and development of humans. The need to explore the nutritional compositions of various species of fish in different water bodies becomes paramount. Presently, consumer concern is not just on food's nutritional value but also on the safety level. Environmental contamination by heavy metals has become an issue of pressing concern in recent times. Heavy metals, due to their ubiquitous nature, are found in various water bodies as they are released from various anthropogenic activities. This work investigated the proximate compositions, mineral contents, and heavy metals concentrations of four different species of fish (P. annectens, L. niloticus, G. niloticus, and H. niloticus) collected from the lower Niger at Agenebode using standard procedures. The highest protein contents were in Gymnarchus niloticus (37.32%), while the least was in Heterotis niloticus (20.41%). Protopterus annectens had the highest carbohydrate content (34.55%), while Heterotis niloticus had the least (12.24%). The highest lipid content (14.41%) was in Gymnarchus niloticus. The highest concentration of potassium was 21.00 ppm. The concentrations of heavy metals in ppm ranged from 0.01 – 1.4 (Cd), 0.07 – 2.89 (Pb), 0.02 – 16.4 (Hg), 0.88 – 5.1 (Cu) and 1.2 – 8.23 (Zn). The concentrations of Hg, Cd and Pb in some of the samples investigated were higher than the permissible limits based on international standards. There is a pressing need for further study focusing on various species of animals and plants in the area due to the alarming contents of these metals; remedial measures could also be ensured for safety.Keywords: trace metals, nutritional value, human health, crude protein, lipid content
Procedia PDF Downloads 951887 Effect of UV Radiation to Change the Properties of the Composite PA+GF
Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz
Abstract:
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors.Keywords: composites with glass fibers, mechanical properties, polyamides, UV degradation
Procedia PDF Downloads 2881886 Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS
Authors: Ahmadreza Ashraf, Elias Saion, Elham Gharib Shahi, Chee Kong Yap, Mohd Suhaimi Hamzah
Abstract:
Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination.Keywords: coastal East Malaysia, core marine sediments, enrichment factor, heavy metals, INAA and ICP method, modified degree of contamination
Procedia PDF Downloads 3351885 Proecological Antioxidants for Stabilisation of Polymeric Composites
Authors: A. Masek, M. Zaborski
Abstract:
Electrochemical oxidation of dodecyl gallate (lauryl gallate), the main monomer flavanol found in green tea, was investigated on platinum electrodes using cyclic voltammetry (CV) and differential pulse (DPV) methods. The rate constant, electron transfer coefficient and diffusion coefficients were determined for dodecyl gallate electrochemical oxidation. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the aromatic ring of dodecyl gallate. Confirmed antioxidant activity of lauryl gallate verified its use in polymers as an environment-friendly stabiliser to improve the resistance to aging of the elastomeric materials. Based on the energy change of the deformation, cross-linking density and time of the oxygen induction with the TG method, we confirmed the high antioxidant activity of lauryl gallate in polymers. Moreover, the research on biodegradation confirmed the environment-friendly influence of the antioxidant by increasing the susceptibility of the elastomeric materials to disintegration by mildew mushrooms.Keywords: polymers, flavonoids, stabilization, ageing
Procedia PDF Downloads 3801884 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil
Authors: M. A. Stoian, D. M. Cocarta, A. Badea
Abstract:
The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6.Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution
Procedia PDF Downloads 4221883 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 3101882 Quantitative Determination of Heavy Metals in Some Commonly Consumed Herbal Medicines in Kano State, Nigeria
Authors: Aliyu Umar, Mohammed Yau, Faruruwa M. Dahiru, Saed Garba
Abstract:
Evaluation of heavy metals in twelve commonly consumed herbal medicines/preparations in Kano State, Nigeria, was carried out. The samples comprised of five unregistered powdered medicines, namely, Zuwo, (ZW); Rai Dorai, (RD); Miyar Tsanya, (MTS); Bagaruwar Makka, (BM); and Madobiya, (M); five unregistered liquid herbal medicinal concussions for pile (MB), yellow fever (MS), typhoid (MT), stomach pain (MC), sexually transmitted diseases (STDs); and two registered herbal medicines; Alif Powder (AP) and Champion Leaf (CL). The heavy metals evaluation was carried out using Atomic Absorption Spectroscopy (AAS) and the result revealed the concentrations (ppm) ranges of the heavy metals as follows: Cadmium (0.0045 – 0.1601), Chromium (0.0418 – 0.2092), Cobalt (0.0038 – 0.0760), Copper (0.0547 – 0.2465), Iron (0.1197 – 0.3592), Manganese (0.0123 – 1.4462), Nickel (0.0073 – 0.0960), Lead (0.185 – 0.0927) and Zinc (0.0244 – 0.2444). Comparing the results obtained in this work with the standards of the World Health Organization (WHO), the Food and Agricultural Organization (FAO) and permissible limits of other countries, the concentrations of heavy metals in the herbal medicine/preparations are within the allowed permissible limits range in herbal medicines and their use could be safe.Keywords: Kano state, herbal medicines, registered, unregistered
Procedia PDF Downloads 2401881 The Joint Properties for Friction Stir Welding of Aluminium Tubes
Authors: Ahbdelfattah M. Khourshid, T. Elabeidi
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones.Keywords: friction stir welding (FSW), Al alloys, mechanical properties, microstructure
Procedia PDF Downloads 5351880 Synthesis of Pyrimidine-Based Polymers Consist of 2-{3-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]Phenyl}-Thiazolo[5,4-B]Pyridine as Electron-Deficient Unit for Photovoltaics
Authors: Hyehyeon Lee, Juwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh
Abstract:
Recently, the development of photovoltaics is rapidly accelerating as one of green energy sources. So we designed pyrimidine-based polymers with 2-{3-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (mPTP), as active layer substances for polymer solar cells. Polymers with push-pull types, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI, are comprised of electron pushing unit using benzo[1,2-b;3,4-b’]dithiophene (BDT) or 4,8-bis(5-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) or 6-(2-thienyl)-4H-thieno[3,2-b]indole(TTI) and electron pulling unit using mPTP. The device including mPTPTTI-12 indicated a VOC of 0.67 V, a JSC of 2.16 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency (PCE) of 0.43%. The device including mPTPBDT-EH indicated a VOC of 0.56 V, a JSC of 2.64 mA/cm², and an FF of 0.30, giving a PCE of 0.44%. The device including mPTPBDTT-EH indicated a VOC of 0.44 V, a JSC of 2.45 mA/cm², and an FF of 0.29, giving a PCE of 0.31%. The device including mPTPTTI indicated a VOC of 0.72 V, a JSC of 4.95 mA/cm², and an FF of 0.32, giving a PCE of 1.15%. Therefore, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI were fabricated by Stille polymerization. Their optical properties were measured and the results show that pyrimidine-based polymers have a great promise to act as donor of active layer.Keywords: polymer solar cells, photovoltaics, thiazolopyridine, conjugated polymer
Procedia PDF Downloads 2741879 An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria
Authors: Raphael Odoh, Obida J. Oko, Mary S. Dauda
Abstract:
The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification.Keywords: Benue State, contamination, edible oils, heavy metals, markets, Taraba State
Procedia PDF Downloads 3231878 Incidences and Chemico-Mobility of Toxic Heavy Metals in Environmental Samples
Authors: I. Hilia, C. Hange, F. Hakala, M. Matheus, C. Jansen, J. Hidinwa, O. Awofolu
Abstract:
The article reports on the occurrences, level, and mobility of selected trace metals in environmental samples. The conceptual basis was to examine the possible influence of anthropogenic activities and the impact on human and environmental health. Environmental samples (soil, plant and lower animal) were randomly collected from stratified study/sampling areas, preserved and pre-treated before analysis. Mineral acid digestion procedure was employed for the isolation of metallic contents in samples, and elemental qualitative and quantitative analysis was by ICP-OES. Analytical protocol was validated through the quality assurance process and was found acceptable with quantitative metallic recoveries in the range of 85-90%; hence considered applicable for the analyses of environmental samples. The mean concentration of analysed metals in soil samples ranged from 53.2- 2532.8 mg/kg (Cu); 59.5- 2020.1 mg/kg (Zn); 1.80 – 21.26 mg/kg (Cd) and 19.6- 140.9 mg/kg (Pb). The mean level in grass samples ranged from 9.33 – 38.63 mg/kg (Cu); 64.20-105.18 mg/kg (Zn); 0.28–0.73 mg/kg (Cd) and 0.53 -16.26 mg/kg (Pb) while the mean level in lower animal sample (beetle) varied from 9.6 - 105.3 mg/kg (Cu); 134.1-297.2 mg/kg (Zn); 0.63 – 3.78 (Cd) and 8.0 – 29.1 mg/kg (Pb) across sample collection points (SCPs) 1-4 respectively. Metallic transfer factors (TFs) were in the order Zn >Cd > Cu > Pb with metal Pollution Indices (MPIs) in the order SCP1 > SCP2 > SCP3 > SCP4. About 60-70 % of analysed metals were above the maximum allowable limits (MALs) in soil and plant samples. Results obtained revealed the general prevalence of analysed metals at all sampled sites with indication of metallic mobility across the food chain which portrayed dire consequences for environmental and human health. Systematic environmental remediation and pollution abatement strategies are recommended.Keywords: trace metals, pollution, human health, Incidences, ICP-OES
Procedia PDF Downloads 1591877 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser
Procedia PDF Downloads 3521876 Concentrations and History of Heavy Metals in Sediment Cores: Geochemistry and Geochronology Using 210Pb
Authors: F. Fernandes, C. Poleto
Abstract:
This paper aims at assessing the concentrations of heavy metals and the isotopic composition of lead 210Pb in different fractions of sediment produced in the watershed that makes up the Mãe d'água dam and thus characterizing the distribution of metals along the sedimentary column and inferencing in the urbanization of the same process. Sample collection was carried out in June 2014; eight sediment cores were sampled in the lake of the dam. For extraction of the sediments core, a core sampler “Piston Core” was used. The trace metal concentrations were determined by conventional atomic absorption spectrophotometric methods. The samples were subjected to radiochemical analysis of 210Po. 210Pb activity was obtained by measuring 210Po activity. The chronology was calculated using the constant rate of supply (CRS). 210Pb is used to estimate the sedimentation rate.Keywords: ²¹⁰Pb dating method, heavy metal, lakes urban, pollution history
Procedia PDF Downloads 298